α-Amylase (Bacillus licheniformis

High purity α-Amylase (Bacillus licheniformis) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

EC 3.2.1.1
CAZy Family: GH13
CAS: 9000-90-2

alpha-amylase; 4-alpha-D-glucan glucanohydrolase

Highly purified. From Bacillus licheniformis.
Stabilised solution.

For use in Megazyme Total Starch and Dietary Fiber methods, suitable for use at pH 6.5 and above.

E-BLAAM-A-100mL specifically to be used with ANKOMTDF Dietary Fiber Analyzer.

Specific activity:
~ 55 U/mg (40oC, pH 6.5 on Ceralpha reagent).

Stability: > 4 years at 4oC.

Data booklets for each pack size are located in the Documentation tab.

View Megazyme’s latest Guide for Dietary Fiber Analysis.

Product Code
Content/Size
Stock
Price
Qty
E-BLAAM-10ML
10mL - 3000 units/mL
$66.00
E-BLAAM-40ML
40mL - 3000 units/mL
$170.00
E-BLAAM-100ML
100mL - 3000 units/mL
$339.00
E-BLAAM-A-100ML
100mL - 750 units/mL (ANKOM)
$85.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

DESCRIPTION

α-Amylase (Bacillus licheniformis)

EC 3.2.1.1
CAZy Family: GH13
CAS: 9000-90-2

Synonyms:
alpha-amylase; 4-alpha-D-glucan glucanohydrolase

Form:
Stabilised solution.

Stability: 
> 4 years at 4oC.

Specific activity:
~ 55 U/mg (40oC, pH 6.5 on Ceralpha reagent).

Unit definition:
One Unit of α-amylase is the amount of enzyme required to release one μmole of p-nitrophenol from blocked p-nitrophenyl-maltoheptaoside per minute (in the presence of excess α-glucosidase) at pH 6.0 and 40oC.

Specificity:
endo-hydrolysis of α-1,4-D-glucosidic linkages in starch.

Applications:
For use in Megazyme Total Starch and Dietary Fiber methods.

New developments in the measurement of α-amylase, endo-protease, β-glucanase and β-xylanase.

McCleary, B. V. & Monaghan, D. (2000). “Proceedings of the Second European Symposium on Enzymes in Grain Processing”, (M. Tenkanen, Ed.), VTT Information Service, pp. 31-38.

Measurement of cereal α-Amylase: A new assay procedure.

McCleary, B. V. & Sheehan, H. (1987). Journal of Cereal Science, 6(3), 237-251.

A new procedure for the measurement of fungal and bacterial α-amylase.

Sheehan, H. & McCleary, B. V. (1988). Biotechnology Techniques, 2(4), 289-292.

An improved enzymic method for the measurement of starch damage in wheat flour.

Gibson, T. S., Al Qalla, H. & McCleary, B. V. (1992). Journal of Cereal Science, 15(1), 15-27.

Measurement of α-amylase activity in white wheat flour, milled malt, and microbial enzyme preparations, using the ceralpha assay: Collaborative study.

McCleary, B. V., McNally, M., Monaghan, D. & Mugford, D. C. (2002). Journal of AOAC International, 85(5), 1096-1102.

The physicochemical properties and in vitro digestibility of selected cereals, tubers and legumes grown in China.

Liu, Q., Donner, E., Yin, Y., Huang, R. L. & Fan, M. Z. (2006). Food Chemistry, 99(3), 470-477.

Determination of “Net Carbohydrates” using high-performance anion exchange chromatography.

Lilla, Z., Sullivan, D., Ellefson, W., Welton, K. & Crowley, R. (2005). Journal of AOAC International, 88(3), 714-719.

Physical, microscopic and chemical characterisation of industrial rye and wheat brans from the Nordic countries.

Kamal-Eldin, A., Lærke, H. N., Knudsen, K. E. B., Lampi, A. M., Piironen, V., Adlercreutz, H., Katina, K., Poutanen, K. & Ɨman, P. A. (2009). Food & nutrition research, 53.

A simplified modification of the AOAC official method for determination of total dietary fiber using newly developed enzymes: preliminary interlaboratory study.

Kanaya, K., Tada, S., Mori, B., Takahashi, R., Ikegami, S., Kurasawa, S., Okuzaki, M., Mori, Y., Innami, S. & Negishi, Y. (2007). Journal of AOAC International, 90(1), 225-237.

Treatment of cereal products with a tailored preparation of Trichoderma enzymes increases the amount of soluble dietary fiber.

Napolitano, A., Lanzuise, S., Ruocco, M., Arlotti, G., Ranieri, R., Knutsen, S. H., Lorito, M. & Fogliano, V. (2006). Journal of Agricultural and Food Chemistry, 54(20), 7863-7869.

Method for the direct determination of available carbohydrates in low-carbohydrate products using high-performance anion exchange chromatography.

Ellingson, D., Potts, B., Anderson, P., Burkhardt, G., Ellefson, W., Sullivan, D., Jacobs, W. & Ragan, R. (2010). Journal of AOAC International, 93(6), 1897-1904.

Low folate content in gluten-free cereal products and their main ingredients.

Yazynina, E., Johansson, M., Jägerstad, M. & Jastrebova, J. (2008). Food Chemistry, 111(1), 236-242.

Starch transformation in bran-enriched extruded wheat flour.

Robin, F., Théoduloz, C., Gianfrancesco, A., Pineau, N., Schuchmann, H. P. & Palzer, S. (2011). Carbohydrate Polymers, 85(1), 65-74.

Potato genotype differences in nutritionally distinct starch fractions after cooking, and cooking plus storing cool.

Monro, J., Mishra, S., Blandford, E., Anderson, J. & Genet, R. (2009). Journal of Food Composition and Analysis, 22(6), 539-545.

Molecular, mesoscopic and microscopic structure evolution during amylase digestion of maize starch granules.

Shrestha, A. K., Blazek, J., Flanagan, B. M., Dhital, S., Larroque, O., Morell, M. K., Gilbert, E. P. & Gilbert, M. J. (2012). Carbohydrate Polymers, 90(1), 23-33.