α-Galactosidase (Aspergillus niger

High purity α-Galactosidase (Aspergillus niger) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

EC 3.2.1.22
CAZy Family: GH36
CAS: 9025-35-8

alpha-galactosidase; alpha-D-galactoside galactohydrolase

Highly purified. From Aspergillus niger
In 3.2 M ammonium sulphate.
Supplied at ~ 1000 U/mL. 

Specific activity:
~ 600 U/mg (40oC, pH 4.5 on p-nitrophenyl-α-D-galactopyranoside).

Stability: > 4 years at 4oC.

Product Code
Content/size
Stock
Price
Qty
E-AGLAN
2,000 Units
$215.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

DESCRIPTION

α-Galactosidase (Aspergillus niger

EC 3.2.1.22
CAZy Family: GH36
CAS: 9025-35-8

Synonyms:
alpha-galactosidase; alpha-D-galactoside galactohydrolase

Form:
In 3.2 M ammonium sulphate.

Stability: 
> 4 years at 4oC.

Specific activity:
~ 600 U/mg (40oC, pH 4.5 on p-nitrophenyl-α-D-galactopyranoside).

Unit definition:
One Unit of activity is the amount of enzyme required to release one µmole of p-nitrophenol (pNP) per minute from p-nitrophenyl-α-D-galactopyranoside per min at pH 4.5 and 40oC.

Specificity:
Hydrolysis of terminal, non-reducing α-D-galactose residues in α-D-galactosides, including galactose oligosaccharides, galactomannans and galactolipids.

Applications:
Applications in carbohydrate and glycobiology research.

α-D-galactosidase activity and galactomannan and galactosylsucrose oligosaccharide depletion in germinating legume seeds.

McCleary, B. V. & Matheson, N. K. (1974). Phytochemistry, 13(9), 1747-1757.

Galactomannan structure and β-mannanase and β-mannosidase activity in germinating legume seeds.

McCleary, B. V. & Matheson, N. K. (1975). Phytochemistry, 14(5-6), 1187-1194.

Galactomannans and a galactoglucomannan in legume seed endosperms: Structural requirements for β-mannanase hydrolysis.

McCleary, B. V., Matheson, N. K. & Small, D. B. (1976). Phytochemistry, 15(7), 1111-1117.

Modes of action of β-mannanase enzymes of diverse origin on legume seed galactomannans.

McCleary, B. V. (1979). Phytochemistry, 18(5), 757-763.

An enzymic technique for the quantitation of galactomannan in guar Seeds.

McCleary, B. V. (1981). Lebensmittel-Wissenschaft & Technologie, 14, 56-59.

Purification and properties of a β-D-mannoside mannohydrolase from guar.

McCleary, B. V. (1982), Carbohydrate Research, 101(1), 75-92.

Preparative–scale isolation and characterisation of 61-α-D-galactosyl-(1→4)-β-D-mannobiose and 62-α-D-galactosyl-(1→4)-β-D-mannobiose.

McCleary, B. V., Taravel, F. R. & Cheetham, N. W. H. (1982). Carbohydrate Research, 104(2), 285-297.

β-D-mannosidase from Helix pomatia.

McCleary, B. V. (1983). Carbohydrate Research, 111(2), 297-310.

Enzymic interactions in the hydrolysis of galactomannan in germinating guar: The role of exo-β-mannanase.

McCleary, B. V. (1983). Phytochemistry, 22(3), 649-658.

Characterisation of the oligosaccharides produced on hydrolysis of galactomannan with β-D-mannase.

McCleary, B. V., Nurthen, E., Taravel, F. R. & Joseleau, J. P. (1983). Carbohydrate Research, 118, 91-109.

Action patterns and substrate-binding requirements of β-D-mannanase with mannosaccharides and mannan-type polysaccharides.

McCleary, B. V. & Matheson, N. K. (1983). Carbohydrate Research, 119, 191-219.

The fine structures of carob and guar galactomannans.

McCleary, B. V., Clark, A. H., Dea, I. C. M. & Rees, D. A. (1985). Carbohydrate Research, 139, 237-260.

Effect of galactose-substitution-patterns on the interaction properties of galactomannas.

Dea, I. C. M., Clark, A. H. & McCleary, B. V. (1986). Carbohydrate Research, 147(2), 275-294.

Effect of the molecular fine structure of galactomannans on their interaction properties - the role of unsubstituted sides.

Dea, I. C. M., Clark, A. H. & McCleary, B. V. (1986). Food Hydrocolloids, 1(2), 129-140.

Galactomannan changes in developing Gleditsia Triacanthos Seeds.

McCleary, B. V., Mallett, I. & Matheson, N. K. (1987). Phytochemistry, 26(7), 1889-1894.

Relationship of grain fructan content to degree of polymerisation in different barleys.

Nemeth, C., Andersson, A. A. M., Andersson, R., Mangelsen, E., Sun, C. & Åman, P. (2014). Food and Nutrition Sciences, 5, 581-589.

Genotypic variation in wheat grain fructan content revealed by a simplified HPLC method.

Huynh, B. L., Palmer, L., Mather, D. E., Wallwork, H., Graham, R. D., Welch, R. M. & Stangoulis, J. C. R. (2008). Journal of Cereal Science, 48(2), 369-378.

Method for the direct determination of available carbohydrates in low-carbohydrate products using high-performance anion exchange chromatography.

Ellingson, D., Potts, B., Anderson, P., Burkhardt, G., Ellefson, W., Sullivan, D., Jacobs, W. & Ragan, R. (2010). Journal of AOAC International, 93(6), 1897-1904.

Characterisation of dietary fibre components in rye products.

Rakha, A., Åman, P. & Andersson, R. (2010). Food Chemistry, 119(3), 859-867.

Waxy endosperm accompanies increased fat and saccharide contents in bread wheat (Triticum aestivum) grain.

Yasui, T. & Ashida, K. (2011). Journal of cereal science, 53(1), 104-111.

Differences in freeze tolerance of zoysiagrasses: II. Carbohydrate and proline accumulation.

Patton, A. J., Cunningham, S. M., Volenec, J. J. & Reicher, Z. J. (2007). Crop Science, 47(5), 2170-2181.

Chain length of inulin affects its degradation and the microbiota in the gastrointestinal tract of weaned piglets after a short-term dietary application.

Paßlack, N., Al-Samman, M., Vahjen, W., Männer, K. & Zentek, J. (2012). Livestock Science, 149(1-2), 128-136.

A simple and accurate method for determining wheat grain fructan content and average degree of polymerization.

Verspreet, J., Pollet, A., Cuyvers, S., Vergauwen, R., Van den Ende, W., Delcour, J. A. & Courtin, C. M. (2012). Journal of Agricultural and Food Chemistry, 60(9), 2102-2107.

How does the preparation of rye porridge affect molecular weight distribution of extractable dietary fibers?

Rakha, A., Åman, P. & Andersson, R. (2011). International journal of molecular sciences, 12(5), 3381-3393.