α-L-Arabinofuranosidase (Aspergillus niger

High purity α-L-Arabinofuranosidase (Aspergillus niger) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

EC 3.2.1.55
CAZy Family: GH51
CAS: 9067-74-7

non-reducing end alpha-L-arabinofuranosidase; alpha-L-arabinofuranoside non-reducing end alpha-L-arabinofuranosidase

From Aspergillus niger
In 3.2 M ammonium sulphate.
Supplied at ~ 300 U/mL. 

Specific activity:  
~ 32 U/mg (40oC, pH 5.5 on p-nitrophenyl-α-L-arabinofuranoside);
~ 12.6 U/mg (on sugar-beet arabinan);
~ 1.2 U/mg (on wheat arabinoxylan). 

Stability: > 4 years at 4oC.

Product Code
Content/size
Stock
Price
Qty
E-AFASE
480 Units
$198.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

DESCRIPTION

α-L-Arabinofuranosidase (Aspergillus niger)

EC 3.2.1.55
CAZy Family: GH51
CAS: 9067-74-7

Synonyms:
non-reducing end alpha-L-arabinofuranosidase; alpha-L-arabinofuranoside non-reducing end alpha-L-arabinofuranosidase

Form:
In 3.2 M ammonium sulphate.

Stability: 
> 4 years at 4oC.

Specific activity:
~ 32 U/mg (40oC, pH 5.5 on p-nitrophenyl-α-L-arabinofuranoside); 
~ 12.6 U/mg (on sugar-beet arabinan); 
~ 1.2 U/mg (on wheat arabinoxylan).

Unit definition:.
One Unit of α-L-arabinofuranosidase activity is defined as the amount of enzyme required to release one µmole of p-nitrophenol (pNP) per minute from p-nitrophenyl-α-L-arabinofuranoside (5 mM) in sodium acetate buffer (100 mM), pH 4.0 at 40oC.

Specificity:
Hydrolysis of α-1,2- and α-1,3-linked L-arabinofuranose residues from arabinoxylans and branched arabinans. Hydrolyses α-1,5-linked arabino-oligosaccharides at a much lower rate.

Applications:
Applications in carbohydrate and biofuels research.

Hydrolysis of wheat flour arabinoxylan, acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by β-xylanase, α-L-arabinofuranosidase and β-xylosidase.

McCleary, B. V., McKie, V. A., Draga, A., Rooney, E., Mangan, D. & Larkin, J. (2015). Carbohydrate Research, 407, 79-96.

Novel and selective substrates for the assay of endo-arabinanase.

McCleary, B. V. (1989). "Gums and Stabilisers for the Food Industry, Vol 5”, (G. O. Phillips, D. J. Wedlock and P. A.Williams, Eds.), IRL Press, pp. 291-298.

Comparison of endolytic hydrolases that depolymerize 1,4-β-D-mannan, 1,5-α-L-arabinan and 1,4-β-D-galactan.

McCleary, B. V. (1991). “Enzymes in Biomass Conversion”, (M. E. Himmel and G. F. Leatham, Eds.), ACS Symposium Series 460, Chapter 34, pp. 437-449. American Chemical Society, Washington.

Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution pattern on adsorption characteristics.

Köhnke, T., Östlund, Å. & Brelid, H. (2011). Biomacromolecules, 12(7), 2633-2641.

Preparation of arabinoxylobiose from rye xylan using family 10 Aspergillus aculeatus endo-1,4-β-D-xylanase.

Rantanen, H., Virkki, L., Tuomainen, P., Kabel, M., Schols, H. & Tenkanen, M. (2007). Carbohydrate Polymers, 68(2), 350-359.

Production and characterisation of recombinant α-L-arabinofuranosidase for production of xylan hydrogels.

Chimphango, A. F. A., Rose, S. H., Van Zyl, W. H. & Görgens, J. F. (2012). Applied Microbiology and Biotechnology, 95(1), 101-112.

Effect of nanocoating with rhamnogalacturonan‐I on surface properties and osteoblasts response.

Gurzawska, K., Svava, R., Syberg, S., Yihua, Y., Haugshøj, K. B., Damager, I., Ulvskov, P., Christensen, L. H., Gotfredsen, K. & Jørgensen, N. R. (2012). Journal of Biomedical Materials Research Part A, 100(3), 654-664.

Pectin Metabolism and Assembly in the Cell Wall of the Charophyte Green Alga Penium margaritaceum.

Domozych, D. S., Sørensen, I., Popper, Z. A., Ochs, J., Andreas, A., Fangel, J. U., Pielach, A., Sacks, C., Brechka, H., Ruisi-Besares, P., Willats, W. G. & Rose, J. K. C. (2014). Plant Physiology, 165(1), 105-18.

Substituent-specific antibody against glucuronoxylan reveals close association of glucuronic acid and acetyl substituents and distinct labeling patterns in tree species.

Koutaniemi, S., Guillon, F., Tranquet, O., Bouchet, B., Tuomainen, P., Virkki, L., Petersen, H. L., Willats, W. G. T., Saulnier, L. & Tenkanen, M. (2012). Planta, 236(2), 739-751.

Enrichment of ginsenoside Rd in Panax ginseng extract with combination of enzyme treatment and high hydrostatic pressure.

Palaniyandi, S. A., Damodharan, K., Lee, K. W., Yang, S. H. & Suh, J. W. (2015). Biotechnology and Bioprocess Engineering, 20(3), 608-613.

Facilitating the enzymatic saccharification of pulped bamboo residues by degrading the remained xylan and lignin–carbohydrates complexes.

Huang, C., He, J., Li, X., Min, D. & Yong, Q. (2015). Bioresource Technology, 192, 471-477.

Relationship between structure and immunological activity of an arabinogalactan from Lycium ruthenicum.

Peng, Q., Liu, H., Lei, H. & Wang, X. (2016). Food Chemistry, 194, 595-600.

Multi-layer mucilage of Plantago ovata seeds: Rheological differences arise from variations in arabinoxylan side chains.

Yu, L., Yakubov, G. E., Zeng, W., Xing, X, Stenson, J., Bulone, V. &Stokes, J. R. (2017). Journal of the Science of Food and Agriculture, 165(1), 132-141.

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.

FAQs