α-L-Arabinofuranosidase (novel specificity) (Bifidobacterium adolescentis)

High purity α-L-Arabinofuranosidase (novel specificity) (Bifidobacterium adolescentis) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

EC 3.2.1.55
CAZy Family: GH43
CAS: 9067-74-7

non-reducing end alpha-L-arabinofuranosidase; alpha-L-arabinofuranoside non-reducing end alpha-L-arabinofuranosidase

Recombinant. From Bifidobacterium adolescentis
In 3.2 M ammonium sulphate.
Supplied at ~ 200 U/mL.   

Specific activity:
~ 90 U/mg (40oC, pH 6.0 on xylanase degraded wheat arabinoxylan);  
~ 28 U/mg (40oC, pH 6.0 on wheat arabinoxylan); 
~ 4 U/mg (40oC, pH 6.0 on sugar-beet arabinan); 
~ 0.1 U/mg (40oC, pH 6.0 on p-nitrophenyl-α-L-arabinofuranoside).

Stability: > 4 years at 4oC.

Product Code
Content/size
Stock
Price
Qty
E-AFAM2
400 Units
$209.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

DESCRIPTION

α-L-Arabinofuranosidase (novel specificity) (Bifidobacterium adolescentis

EC 3.2.1.55
CAZy Family: GH43
CAS: 9067-74-7

Synonyms:
non-reducing end alpha-L-arabinofuranosidase; alpha-L-arabinofuranoside non-reducing end alpha-L-arabinofuranosidase

Form:
In 3.2 M ammonium sulphate.

Stability: 
> 4 years at 4oC.

Specific activity:
~ 90 U/mg (40oC, pH 6.0 on xylanase degraded wheat arabinoxylan);
~ 28 U/mg (40oC, pH 6.0 on wheat arabinoxylan);
~ 4 U/mg (40oC, pH 6.0 on sugar-beet arabinan);
~ 0.1 U/mg (40oC, pH 6.0 on p-nitrophenyl-α-L-arabinofuranoside).

Unit definition:.
One Unit of α-L-arabinofuranosidase activity is defined as the amount of enzyme required to release one µmole of arabinose per minute from wheat arabinoxylan (10 mg/mL) in sodium phosphate buffer (100 mM) pH 6.0 at 40oC.

Specificity:
Highly specific hydrolysis of α-1,3-linked L-arabinofuranose residues from doubly substituted D-xylosyl or L-arabinosyl residues of arabinoxylans and branched arabinans, respectively.

Applications:
Applications in carbohydrate and biofuels research.

Hydrolysis of wheat flour arabinoxylan, acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by β-xylanase, α-L-arabinofuranosidase and β-xylosidase.

McCleary, B. V., McKie, V. A., Draga, A., Rooney, E., Mangan, D. & Larkin, J. (2015). Carbohydrate Research, 407, 79-96.

Cloning and characterization of arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083.

Van den Broek, L. A. M., Lloyd, R. M., Beldman, G., Verdoes, J. C., McCleary, B. V. & Voragen, A. G. J. (2005). Applied Microbiology and Biotechnology, 67(5), 641-647.

Production of structurally diverse wheat arabinoxylan hydrolyzates using combinations of xylanase and arabinofuranosidase.

Mendis, M. & Simsek, S. (2015). Carbohydrate Polymers, 132, 452-459.

Characterization of indigestible carbohydrates in various fractions from wheat processing.

Haskå, L., Nyman, M. & Andersson, R. (2010). Cereal Chemistry, 87(2), 125-130.

Molecular characterization and solution properties of enzymatically tailored arabinoxylans.

Pitkänen, L., Tuomainen, P., Virkki, L. & Tenkanen, M. (2011). International Journal of Biological Macromolecules, 49(5), 963-969.

Specific enzymatic tailoring of wheat arabinoxylan reveals the role of substitution on xylan film properties.

Heikkinen, S. L., Mikkonen, K. S., Pirkkalainen, K., Serimaa, R., Joly, C. & Tenkanen, M. (2013). Carbohydrate Polymers, 92(1), 733-740.

Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution pattern on adsorption characteristics.

Köhnke, T., Östlund, Å. & Brelid, H. (2011). Biomacromolecules, 12(7), 2633-2641.

Enzyme kinetics and identification of the rate-limiting step of enzymatic arabinoxylan degradation.

Rasmussen, L. E., Xu, C., Sørensen, J. F., Nielsen, M. K. & Meyer, A. S. (2012). Biochemical Engineering Journal, 69, 8-16.

A glucurono(arabino)xylan synthase complex from wheat contains members of the GT43, GT47, and GT75 families and functions cooperatively.

Zeng, W., Jiang, N., Nadella, R., Killen, T. L., Nadella, V. & Faik, A. (2010). Plant Physiology, 154(1), 78-97.

Step-wise enzymatic preparation and structural characterization of singly and doubly substituted arabinoxylo-oligosaccharides with non-reducing end terminal branches.

Pastell, H., Tuomainen, P., Virkki, L. & Tenkanen, M. (2008). Carbohydrate Research, 343(18), 3049-3057.

Structural comparison of arabinoxylans from two barley side-stream fractions.

Pitkänen, L., Tuomainen, P., Virkki, L., Aseyev, V. & Tenkanen, M. (2008). Journal of Agricultural and Food Chemistry, 56(13), 5069-5077.

Constructing arabinofuranosidases for dual arabinoxylan debranching activity.

Wang, W., Andric, N., Sarch, C., Silva, B. T., Tenkanen, M. & Master, E. R. (2017). Biotechnology and Bioengineering, In Press.