Amylose/Amylopectin Assay Kit

The Amylose/Amylopectin test kit is suitable for the measurement and analysis of amylose/amylopectin ratio and content in cereal starches and flours. Based on a Con A precipitation procedure.

Image unavailable
Product Code
100 assays per kit

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

Colourimetric method for the determination of Amylose and
Amylopectin in cereals, food and feed

                                                                      (Con A)
(1) Soluble starch (amylose + amylopectin) →
                                                        amylose + amylopectin-Con A
                                                        (soluble)         (precipitate)

                          (α-amylase + amyloglucosidase)
(2) Amylose (in solution) + H2O → D-glucose

                                 (glucose oxidase)
(3) D-Glucose + H2O + O2 → D-gluconate + H2O2

(4) H2O2 + p-hydroxybenzoic acid + 4-aminoantipyrine →
                                                                       quinoneimine + H2O

                                 (α-amylase + amyloglucosidase)
(5) Total starch (in solution) + H2O → D-glucose

Kit size:                             100 assays
Method:                             Spectrophotometric at 510 nm
Total assay time:               ~ 120 min
Detection limit:                  Amylose 5-95% of total starch content
Application examples:
Cereal starches, flours, pure starches and foods
Method recognition:         Novel method


  • Very cost effective (cost per test)
  • All reagents stable for > 12 months after preparation
  • Only enzymatic kit available
  • Accurate and reliable amylose / amylopectin ratio determination
  • Simple format
  • Standard included

Measurement of total starch in cereal products by amyloglucosidase-alpha-amylase method: collaborative study.

McCleary, B. V., Gibson, T. S. & Mugford, D. C. (1997). Journal of AOAC International, 80, 571-579.

A procedure to measure amylose in cereal starches and flours with concanavalin A.

Gibson, T. S., Solah, V. A. & McCleary, B. V. (1997). Journal of Cereal Science, 25(2), 111-119.

Measurement of carbohydrates in grain, feed and food.

McCleary, B. V., Charnock, S. J., Rossiter, P. C., O’Shea, M. F., Power, A. M. & Lloyd, R. M. (2006). Journal of the Science of Food and Agriculture, 86(11), 1648-1661.

High hydrostatic pressure influences antinutritional factors and in vitro protein digestibility of split peas and whole white beans.

Linsberger-Martin, G., Weiglhofer, K., Thi Phuong, T. P. & Berghofer, E. (2013). LWT-Food Science and Technology, 51(1), 331-336.

New determination method of amylose content in potato starch.

Stawski, D. (2008). Food Chemistry, 110(3), 777-781.

High pressure phase transition kinetics of maize starch.

Buckow, R., Heinz, V. & Knorr, D. (2007). Journal of Food Engineering, 81(2), 469-475.

Characterization of starch from tubers of yam bean (Pachyrhizus ahipa).

Forsyth, J. L., Ring, S. G., Noel, T. R., Parker, R., Cairns, P., Findlay, K. & Shewry, P. R. (2002). Journal of Agricultural and Food Chemistry, 50(2), 361-367.

Effects of wheat inclusion and xylanase supplementation of the diet on productive performance, nutrient retention, and endogenous intestinal enzyme activity of laying hens.

Mirzaie, S., Zaghari, M., Aminzadeh, S., Shivazad, M. & Mateos, G. G. (2012). Poultry Science, 91(2), 413-425.

Effect of cultivar, location and year on total starch, amylose, phosphorus content and starch grain size of high starch potato cultivars for food and industrial processing.

Šimková, D., Lachman, J., Hamouz, K. & Vokál, B. (2013). Food Chemistry, 141(4), 3872-3880.

Structure and digestibility of debranched and hydrothermally treated water yam starch.

Trinh, K. S., Choi, S. J. & Moon, T. W. (2013). Starch‐Stärke, 65(7‐8), 679-685.

Elimination of resistant starch type II within the framework of total starch and dietary fibre analysis by microwave irradiation.

Themeier, H., Hollmann, J., Neese, U. & Lindhauer, M. G. (2010). Quality Assurance and Safety of Crops & Foods, 2(1), 46-51.

Processing properties of Korean rice varieties in relation to rice noodle quality.

Han, H. M., Cho, J. H. & Koh, B. K. (2011). Food Science and Biotechnology, 20(5), 1277-1282.

Molecular diversity and differential expression of starch-synthesis genes in developing kernels of three maize inbreds.

Ding, X. Z., Wang, B. G., Gao, Q. H., Zhang, Q., Yan, G. Q., Duan, K. & Huang, J. H. (2009). Plant Cell Reports, 28(10), 1487-1495.

Value Added of Resistant Starch Maize-Based Matrices in Breadmaking: Nutritional and Functional Assessment.

Collar, C., Balestra, F. & Ancarani, D. (2014). Food and Bioprocess Technology, 7(12), 3579-3590.

Registration of Common Wheat Germplasm with Mutations in Genes Conferring Increased Grain Amylose and Resistant Starch Content.

Schönhofen, A., Hazard, B., Zhang, X. & Dubcovsky, J. (2016). Journal of Plant Registrations, 10(2), 200-205.

Effects of timing and severity of salinity stress on rice (Oryza sativa L.) yield, grain composition, and starch functionality.

Thitisaksakul, M., Tananuwong, K., Shoemaker, C. F., Chun, A., Tanadul, O. U. M., Labavitch, J. M. & Beckles, D. M. (2015). Journal of Agricultural and Food Chemistry, 63(8), 2296-2304.

Glycemic potency of muffins made with wheat, rice, corn, oat and barley flours: a comparative study between in vivo and in vitro.

Soong, Y. Y., Quek, R. Y. C. & Henry, C. J. (2015). European Journal of Nutrition, 54(8), 1281-1285.

Effect of surfactant treatment on swelling behaviour of normal and waxy cereal starches.

Blake, L. H., Jenner, C. F., Gidley, M. J. & Cozzolino, D. (2015). Carbohydrate Polymers, 125, 265-271.

Effects of ripening temperature on starch structure and gelatinization, pasting, and cooking properties in rice (Oryza sativa).

Chun, A., Lee, H. J., Hamaker, B. R. & Janaswamy, S. (2015). Journal of Agricultural and Food Chemistry, 63(12), 3085-3093.

Incorporation of flavonoid derivatives or pentagalloyl glucose into lignin enhances cell wall saccharification following mild alkaline or acidic pretreatments.

Grabber, J. H., Santoro, N., Foster, C. E., Elumalai, S., Ralph, J. & Pan, X. (2015). BioEnergy Research, 8(3), 1391-1400.
To choose a chapter, play the video and select the required chapter from the options on the video display.

Chapter 1: Introduction
Chapter 2: Theory of the Analytical Procedure
Chapter 3: Kit Content & Reagent Preparation
Chapter 4: Weighing of Samples
Chapter 5: Starch Pretreatment
Chapter 6: Precipitation of Amylopectin with Con A & the Determination of Amylose
Chapter 7: Determination of Total Starch
Chapter 8: Determination of D-Glucose in Amylose and Total Starch Fractions
Chapter 9: Calculation of Amylose Content

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.