Arabinoxylan (Wheat Flour; Low Viscosity ~ 10 cSt)

High purity Arabinoxylan (Wheat Flour; Low Viscosity ~ 10 cSt) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

Purity ~ 95%. Viscosity ~ 10 cSt. Ara: Xyl = 38:62. Glucose, galactose and mannose < 1%.

Product Code
3 grams

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

Novel substrates for the automated and manual assay of endo-1,4-β-xylanase.

Mangan, D., Cornaggia, C., Liadova, A., McCormack, N., Ivory, R., McKie, V. A., Ormerod, A. & McCleary, D. V. (2017). Carbohydrate Research, 445, 14-22.

Hydrolysis of wheat flour arabinoxylan, acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by β-xylanase, α-L-arabinofuranosidase and β-xylosidase.

McCleary, B. V., McKie, V. A., Draga, A., Rooney, E., Mangan, D. & Larkin, J. (2015). Carbohydrate Research, 407, 79-96.

Preparation of arabinoxylobiose from rye xylan using family 10 Aspergillus aculeatus endo-1,4-β-D-xylanase.

Rantanen, H., Virkki, L., Tuomainen, P., Kabel, M., Schols, H. & Tenkanen, M. (2007). Carbohydrate Polymers, 68(2), 350-359.

Complete genome of a new Firmicutes species belonging to the dominant human colonic microbiota (‘Ruminococcus bicirculans’) reveals two chromosomes and a selective capacity to utilize plant glucans.

Wegmann, U., Louis, P., Goesmann, A., Henrissat, B., Duncan, S. H. & Flint, H. J. (2014). Environmental Microbiology, 16(9), 2879–2890.

A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases.

Park, Y. B. & Cosgrove, D. J. (2012). Plant Physiology, 158(4), 1933-1943.

Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin.

Georgelis, N., Yennawar, N. H. & Cosgrove, D. J. (2012). Proceedings of the National Academy of Sciences, 109(37), 14830-14835.

Characterization of a new α-L-arabinofuranosidase from Penicillium sp. LYG 0704, and their application in lignocelluloses degradation.

Lee, D. S., Wi, S. G., Lee, Y. G., Cho, E. J., Chung, B. Y. & Bae, H. J. (2011). Molecular Biotechnology, 49(3), 229-239.

In vitro fermentation kinetics and end-products of cereal arabinoxylans and (1,3;1,4)-β-glucans by porcine faeces.

Williams, B. A., Mikkelsen, D., Le Paih, L. & Gidley, M. J. (2011). Journal of cereal science, 53(1), 53-58.

Characterization and pH-dependent substrate specificity of alkalophilic xylanase from Bacillus alcalophilus.

Lee, D. S., Lee, K. H., Cho, E. J., Kim, H. M., Kim, C. S. & Bae, H. J. (2012). Journal of Industrial Microbiology & Biotechnology, 39(10), 1465-1475.

Co-immobilization and stabilization of xylanase, β-xylosidase and α-L-arabinofuranosidase from Penicillium janczewskii for arabinoxylan hydrolysis.

Terrasan, C. R. F., Trobo-Maseda, L., Moreno-Pérez, S., Carmona, E. C., Pessela, B. C. & Guisan, J. M. (2016). Process Biochemistry, 51(5), 614-623.

Differential growth of bowel commensal Bacteroides species on plant xylans of differing structural complexity.

Centanni, M., Hutchison, J. C., Carnachan, S. M., Daines, A. M., Kelly, W. J., Tannock, G. W. & Sims, I. M. (2017). Carbohydrate Polymers, 157, 1374-1382.

Acidic-alkaline ferulic acid esterase from Chaetomium thermophilum var. dissitum: Molecular cloning and characterization of recombinant enzyme expressed in Pichia pastoris.

Dotsenko, G., Tong, X., Pilgaard, B., Busk, P. K. & Lange, L. (2016). Biocatalysis and Agricultural Biotechnology, 5, 48-55.

Screening, identification, and characterization of a GH43 family β-xylosidase/α-arabinofuranosidase from a compost microbial metagenome.

Matsuzawa, T., Kaneko, S. & Yaoi, K. (2015). Applied Microbiology and Biotechnology, 99(21), 8943-8954.

Optimization of Arundo donax Saccharification by (Hemi) cellulolytic Enzymes from Pleurotus ostreatus.

Liguori, R., Ionata, E., Marcolongo, L., Vandenberghe, L. P. D. S., La Cara, F. & Faraco, V. (2015). BioMed Research International, 2015.

An ELISA Based Method for Quantifying Arabinoxylan in Wheat Flour.

Hoffstetter, A. L., Griffin, D. P., Brown, L. K., Alan, J. K. & Olson, E. L. (2017). Journal of Cereal Science, , 79, 148-153.

Identification and characterization of the first β-1, 3-D-xylosidase from a gram-positive bacterium, Streptomyces sp. SWU10.

Phuengmaung, P., Fujiwara, D., Sukhumsirichart, W. & Sakamoto, T. (2017). Enzyme and Microbial Technology, 112, 72-78.

Performance, egg quality, nutrient digestibility, and excreta microbiota shedding in laying hens fed corn-soybean-meal-wheat-based diets supplemented with xylanase.

Lei, X. J., Lee, K. Y. & Kim, I. H. (2018). Poultry Science, 97(6), 2071-2077.

Cloning and expression of a novel α-1, 3-arabinofuranosidase from Penicillium oxalicum sp. 68.

Hu, Y., Yan, X., Zhang, H., Liu, J., Luo, F., Cui, Y., Wang, W. & Zhou, Y. (2018). AMB Express, 8(1), 51.

Cloning and expression of a novel α-1, 3-arabinofuranosidase from Penicillium oxalicum sp. 68.

Hu, Y., Yan, X., Zhang, H., Liu, J., Luo, F., Cui, Y., Wang, W. & Zhou, Y. (2018). AMB Express, 8(1), 51

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.