Arabinoxylan (Wheat Flour; Medium Viscosity ~ 30 cSt)

High purity Arabinoxylan (Wheat Flour; Medium Viscosity ~ 30 cSt) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

Purity ~ 95%. Viscosity ~ 30 cSt. Recommended substrate for viscometric and reducing-sugar assays of endo-β-D-xylanase activity. Ara: Xyl = 38: 62. Glucose, galactose and mannose < 1%.

Product Code
3 grams

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

Novel substrates for the automated and manual assay of endo-1,4-β-xylanase.

Mangan, D., Cornaggia, C., Liadova, A., McCormack, N., Ivory, R., McKie, V. A., Ormerod, A. & McCleary, D. V. (2017). Carbohydrate Research, 445, 14-22.

Hydrolysis of wheat flour arabinoxylan, acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by β-xylanase, α-L-arabinofuranosidase and β-xylosidase.

McCleary, B. V., McKie, V. A., Draga, A., Rooney, E., Mangan, D. & Larkin, J. (2015). Carbohydrate Research, 407, 79-96.

A Comparison of Polysaccharide Substrates and Reducing Sugar Methods for the Measurement of endo-1,4-β-Xylanase

McCleary, B. V. & McGeough, P. (2015). Appl. Biochem. Biotechnol., 177(5), 1152-1163.

Water extract of Triticum aestivum L. and its components demonstrate protective effect in a model of vascular dementia.

Han, H. S., Jang, J. H., Jang, J. H., Choi, J. S., Kim, Y. J., Lee, C., Lim, S. H., Lee, H. K. & Lee, J. (2010). Journal of Medicinal Food, 13(3), 572-578.

Substituent-specific antibody against glucuronoxylan reveals close association of glucuronic acid and acetyl substituents and distinct labeling patterns in tree species.

Koutaniemi, S., Guillon, F., Tranquet, O., Bouchet, B., Tuomainen, P., Virkki, L., Petersen, H. L., Willats, W. G. T., Saulnier, L. & Tenkanen, M. (2012). Planta, 236(2), 739-751.

Characterization of Xyn30A and Axh43A of Bacillus licheniformis SVD1 identified by its genomic analysis.

Sakka, M., Tachino, S., Katsuzaki, H., van Dyk, J. S., Pletschke, B. I., Kimura, T. & Sakka, K. (2012). Enzyme and Microbial Technology, 51(4), 193-199.

Understanding how noncatalytic carbohydrate binding modules can display specificity for xyloglucan.

Luís, A. S., Venditto, I., Temple, M. J., Rogowski, A., Baslé, A., Xue, J., Knox, J. P., Prates, J. A. M., Ferreira, L. M. A., Fontes, C. M. G. A., Najmudin, S. & Gilbert, H. J. (2013). Journal of Biological Chemistry, 288(7), 4799-4809.

Peroxidase-mediated oxidative cross-linking and its potential to modify mechanical properties in water-soluble polysaccharide extracts and cereal grain residues.

Robertson, J. A., Faulds, C. B., Smith, A. C. & Waldron, K. W. (2008). Journal of Agricultural and Food Chemistry, 56(5), 1720-1726.

A thermo-halo-tolerant and proteinase-resistant endoxylanase from Bacillus sp. HJ14.

Zhou, J., Wu, Q., Zhang, R., Mo, M., Tang, X., Li, J., Xu, B., Ding, J., Lu, Q. & Huang, Z. (2014). Folia Microbiologica, 59(5), 423-431.

In vitro fermentation kinetics and end-products of cereal arabinoxylans and (1,3;1,4)-β-glucans by porcine faeces.

Williams, B. A., Mikkelsen, D., Le Paih, L. & Gidley, M. J. (2011). Journal of cereal science, 53(1), 53-58.

The use of β-xylanase for increasing the efficiency of biocatalytic conversion of crop residues to bioethanol.

Juodeikiene, G., Basinskiene, L., Vidmantiene, D., Makaravicius, T., Bartkiene, E. & Schols, H. (2011). Catalysis Today, 167(1), 113-121.

Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered minihemicellulosome.

Sun, J., Wen, F., Si, T., Xu, J. H. & Zhao, H. (2012). Applied and Environmental Microbiology, 78(11), 3837-3845.

Adsorption of arabinoxylan on cellulosic surfaces: influence of degree of substitution and substitution pattern on adsorption characteristics.

Köhnke, T., Östlund, Å. & Brelid, H. (2011). Biomacromolecules, 12(7), 2633-2641.

Binding selectivity of dietary polyphenols to different plant cell wall components: quantification and mechanism.

Phan, A. D. T., Flanagan, B. M., D'Arcy, B. R. & Gidley, M. J. (2017). Food Chemistry, 233, 216-227.

Effect of Water-Extractable Arabinoxylans from Wheat Aleurone and Bran on Lipid Peroxidation and Factors Influencing their Antioxidant Capacity.

Malunga, L. N., Izydorczyk, M. & Beta, T. (2017). Bioactive Carbohydrates and Dietary Fibre, In Press.

Application of carbohydrate arrays coupled with mass spectrometry to detect activity of plant-polysaccharide degradative enzymes from the fungus Aspergillus niger.

van Munster, J. M., Thomas, B., Riese, M., Davis, A. L., Gray, C. J., Archer, D. B. & Flitsch, S. L. (2017). Scientific Reports, 7.

Multi-scale characterisation of deuterated cellulose composite hydrogels reveals evidence for different interaction mechanisms with arabinoxylan, mixed-linkage glucan and xyloglucan.

Martínez-Sanz, M., Mikkelsen, D., Flanagan, B. M., Gidley, M. J. & Gilbert, E. P. (2017). Polymer, 124, 1-11.

Removal of lignin from straw spent pulping liquor using synthetic cationic and biobased flocculants.

Piazza, G. J., Lora, J. H., Wayman, L. I. & Garcia, R. A. (2017). Separation and Purification Technology, 188, 348-357.

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.