β-Galactosidase (Aspergillus niger

High purity β-Galactosidase (Aspergillus niger) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

EC 3.2.1.23
CAZy Family: GH35
CAS: 9031-11-2

beta-galactosidase; beta-D-galactoside galactohydrolase

Highly purified. From Aspergillus niger.
In 3.2 M ammonium sulphate. 
Supplied at ~ 4,000 U/mL. 

Specific activity
~ 200 U/mg (40oC, pH 4.5 on p-nitrophenyl β-D-galactoside).

Stability: > 4 years at 4oC.

Product Code
Content/size
Stock
Price
Qty
E-BGLAN
8,000 Units
$199.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

DESCRIPTION

β-Galactosidase (Aspergillus niger)

EC 3.2.1.23
CAZy Family: GH35
CAS: 9031-11-2

Synonyms:
beta-galactosidase; beta-D-galactoside galactohydrolase 

Form:
In 3.2 M ammonium sulphate.

Stability: 
> 4 years at 4oC.

Specific activity:
~ 200 U/mg (40oC, pH 4.5 on p-nitrophenyl β-D-galactoside).

Unit definition:.
One Unit of β-galactosidase activity is defined as the amount of enzyme required to release one µmole of p-nitrophenol (pNP) per minute from p-nitrophenyl-β-D-galactoside (10 mM) in sodium acetate buffer (100 mM), pH 4.5 at 40oC.

Specificity:
Hydrolysis of terminal non-reducing β-D-galactose residues in β-D-galactosides.

Applications:
Applications established in diagnostics and research within the food and feed, carbohydrate and biofuels industries.

Measurement of total starch in cereal products by amyloglucosidase-alpha-amylase method: collaborative study.

McCleary, B. V., Gibson, T. S. & Mugford, D. C. (1997). Journal of AOAC International, 80, 571-579.

Measurement of carbohydrates in grain, feed and food.

McCleary, B. V., Charnock, S. J., Rossiter, P. C., O’Shea, M. F., Power, A. M. & Lloyd, R. M. (2006). Journal of the Science of Food and Agriculture, 86(11), 1648-1661.

Method for the direct determination of available carbohydrates in low-carbohydrate products using high-performance anion exchange chromatography.

Ellingson, D., Potts, B., Anderson, P., Burkhardt, G., Ellefson, W., Sullivan, D., Jacobs, W. & Ragan, R. (2010). Journal of AOAC International, 93(6), 1897-1904.

β-Galactosidase from Bifidobacterium adolescentis DSM20083 prefers β-(1,4)-galactosides over lactose.

Hinz, S. W. A., Van den Broek, L. A. M., Beldman, G., Vincken, J. P. & Voragen, A. G. J. (2004). Applied Microbiology and Biotechnology, 66(3), 276-284.

Kinetic Analyses of Retaining endo-(Xylo) glucanases from Plant and Microbial Sources Using New Chromogenic Xylogluco-Oligosaccharide Aryl Glycosides.

Ibatullin, F. M., Baumann, M. J., Greffe, L. & Brumer, H. (2008). Biochemistry, 47(29), 7762-7769.

An investigation of the substrate specificity of the xyloglucanase Cel74A from Hypocrea jecorina.

Desmet, T., Cantaert, T., Gualfetti, P., Nerinckx, W., Gross, L., Mitchinson, C. & Piens, K. (2007). FEBS Journal, 274(2), 356-363.

Rheological properties of thermally xyloglucan gel from the seeds of Hymenaea courbaril.

Busato, A. P., Reicher, F., Domingues, R. & Silveira, J. L. M. (2009). Materials Science and Engineering: C, 29(2), 410-414.

A high molecular arabinogalactan from Ribes nigrum L.: influence on cell physiology of human skin fibroblasts and keratinocytes and internalization into cells via endosomal transport.

Zippel, J., Deters, A., Pappai, D. & Hensel, A. (2009). Carbohydrate Research, 344(8), 1001-1008.

Crystal structures of Clostridium thermocellum xyloglucanase, XGH74A, reveal the structural basis for xyloglucan recognition and degradation.

Martinez-Fleites, C., Guerreiro, C. I. P.D., Baumann, M. J., Taylor, E. J., Prates, J. A. M., Ferreira, L. M. A., Fontes, C. M. G. A., Brumer, H. & Davies, G. J. (2006). Journal of Biological Chemistry, 281(34), 24922-24933.

Solubilization of galactosyltransferase that synthesizes 1,4‐β-galactan side chains in pectic rhamnogalacturonan I.

Geshi, N., Pauly, M. & Ulvskov, P. (2002). Physiologia Plantarum, 114(4), 540-548.

Substrate specificities of glycosidases from Aspergillus species pectinase preparations on elderberry anthocyanins.

Pricelius, S., Murkovic, M., Souter, P. & Guebitz, G. M. (2009). Journal of Agricultural and Food Chemistry, 57(3), 1006-1012.

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.

FAQs