β-Glucan Assay Kit (Yeast & Mushroom) 

β-Glucan (Yeast & Mushroom) Assay Kit is suitable for the measurement and analysis of 1,3:1,6-β-glucan and α-glucan in yeast and mushroom  preparations.

New, improved procedure.

Several acid and enzyme-based methods for the hydrolysis of β-glucan were compared and the best option was the method using H2SO4. For most samples, similar β-glucan values were obtained with both the optimized HCl and H2SO4 procedures. However, in the case of certain samples, specifically Ganoderma lucidum and Poria cocus, the H2SO4 procedure resulted in significantly higher values.

McCleary, B.V. & Draga, A. (2016). Measurement of β-Glucan in Mushrooms and Mycelial Products. Journal of AOAC International, Vol. 99, No. 2.

The kit components have not been altered from previous lots.

Image unavailable
Product Code
100 assays per kit

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

Colourimetric method for the determination of Yeast and
Mushroom β-Glucan in yeast, mushroom, foodstuffs and
other materials

                                                              (12 M H2SO4, 0°C, 2 h)
(1) 1,3:1,6-β-Glucan + 1,3-β-glucan + α-glucan + H2O →
                                                                        soluble glucan

                         (1 M H2SO4, 100°C, 2 h)
(2) Soluble glucan + H2O → D-glucose + laminarisaccharides (trace)

                  (exo-1,3-β-glucanase + β-glucosidase)
(3) Laminarisaccharides + H2O → D-glucose

                              (glucose oxidase)
(4) D-Glucose + H2O + O2 → D-gluconate + H2O2

(5) 2H2O2 + p-hydroxybenzoic acid + 4-aminoantipyrine →
                                                                        quinoneimine + 4H2O

(6) α-Glucan + H2O    →    D-glucose

Kit size:                            100 assays
Method:                            Spectrophotometric at 510 nm
Total assay time:              ~ 100 min
Detection limit:                1-100% of sample weight
Application examples:
Yeast preparations, mushroom preparations and other materials
Method recognition:       Novel method


  • Very cost effective
  • All reagents stable for > 12 months after preparation
  • Only enzymatic kit available
  • Simple format
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing
  • Standard included

Measurement of β-Glucan in Mushrooms and Mycelial Products.

McCleary, B. V. & Draga, A. (2016). Journal of AOAC International, 99(2), 364-373.

Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms.

Sari, M., Prange, A., Lelley, J. I. & Hambitzer R. (2016). Food Chemistry, 216, 45-51.

Characterization of cross-flow ultrafiltration fractions from Maitake Medicinal Mushroom, Grifola frondosa (Agaricomycetes), Reveals Distinct Cytotoxicity in Tumor Cells.

Sari, M., Hambitzer, R., Lelley, J. I., Toepler, K., Teusch, N., Nickisch-Hartfiel, A. (2016). International Journal of Medicinal Mushrooms, 18(8), 671-680.

Mushrooms of genus Pleurotus as a source of dietary fibres and glucans for food supplements.

Synytsya, A., MíčKoVá, K., Jablonský, I., Sluková, M. & Čopíková, J. (2008). Czech Journal of Food Sciences, 26(6), 441-446.

Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity.

Synytsya, A., Míčková, K., Synytsya, A., Jablonský, I., Spěváček, J., Erban, V., Kováříková, E. & Čopíková, J. (2009). Carbohydrate Polymers, 76(4), 548-556.

High Cell Density Fermentation of Saccharomyces cerevisiae JUL3 in Fed-batch Culture for the Production of β-Glucan.

Kim, Y. H., Kang, S. W., Lee, J. H., Chang, H. L., Yun, C. W., Paik, H. D., Kang, C. W. & Kim, S. W. (2007). Journal of Industrial and Engineering Chemistry-Seoul-, 13(1), 153-158.

Development of aloe fermentation products and improvements of gastrointestinal function in vitro.

Cho, J. H., Baik, S. O., Kim, C. S., Kim, H. H., Jung, E. J., Kim, H. K. & Kim, B. K. (2012). Food Science and Biotechnology, 21(1), 35-42.

Response surface optimization of β-glucan extraction from cauliflower mushrooms (Sparassis crispa).

Bae, I. Y., Kim, K. J., Lee, S. & Lee, H. G. (2012). Food Science and Biotechnology, 21(4), 1031-1035.

Sparassis crispa suppresses mast cell-mediated allergic inflammation: Role of calcium, mitogen-activated protein kinase and nuclear factor-κB.

Kim, H. H., Lee, S., Singh, T. S., Choi, J. K., Shin, T. Y. & Kim, S. H. (2012). International Journal of Molecular Medicine, 30(2), 344-350(7).

Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus.

Kozarski, M., Klaus, A., Niksic, M., Jakovljevic, D., Helsper, J. P. F. G. & Van Griensven, L. J. L. D. (2011). Food chemistry, 129(4), 1667-1675.

New method development for nanoparticle extraction of water-soluble β-(1→ 3)-D-glucan from edible mushrooms, Sparassis crispa and Phellinus linteus.

Park, H. G., Shim, Y. Y., Choi, S. O. & Park, W. M. (2009). Journal of Agricultural and Food Chemistry, 57(6), 2147-2154.

Optimization of biomass production with enhanced glucan and dietary fibres content by Pleurotus ostreatus ATHUM 4438 under submerged culture.

Papaspyridi, L. M., Katapodis, P., Gonou-Zagou, Z., Kapsanaki-Gotsi, E. & Christakopoulos, P. (2010). Biochemical Engineering Journal , 50(3), 131-138.

Soluble β-1,3/1,6-glucan in seaweed from the southern hemisphere and its immunomodulatory effect.

Bobadilla, F., Rodriguez-Tirado, C., Imarai, M., Galotto, M. J. & Andersson, R. (2013). Carbohydrate polymers, 92(1), 241-248.

Isolation of the intracellular and extracellular polysaccharides of Ganoderma neojaponicum (Imazeki) and characterization of their immunomodulatory properties.

Ubaidillah, N., Hafizah, N., Abdullah, N. & Sabaratnam, V. (2015). Electronic Journal of Biotechnology, 18(3), 188-195.

Effect of selenium-enriched Agaricus bisporus (higher Basidiomycetes) extracts, obtained by pressurized water extraction, on the expression of cholesterol homeostasis related genes by low-density array.

Gil-Ramirez, A., Soler-Rivas, C., Rodriguez-Casado, A., Ruiz-Rodriguez, A., Reglero, G. & Marin, F. R. (2015). International Journal of Medicinal Mushrooms, 17(2).

Cell lysis induced by membrane-damaging detergent saponins from Quillaja saponaria.

Berlowska, J., Dudkiewicz, M., Kregiel, D., Czyzowska, A. & Witonska, I. (2015). Enzyme and Microbial Technology, 75, 44-48.

GC-TOF-MS-based serum metabolomic investigations of naked oat bran supplementation in high-fat-diet-induced dyslipidemic rats.

Gu, J., Jing, L., Ma, X., Zhang, Z., Guo, Q. & Li, Y. (2015). The Journal of Nutritional Biochemistry, 26(12), 1509-1519.

Modulation of cholesterol-related gene expression by dietary fiber fractions from edible mushrooms.

Caz, V., Gil-Ramírez, A., Largo, C., Tabernero, M., Santamaría, M., Martín-Hernández, R., Marin, F. R., Reglero, G. & Soler-Rivas, C. (2015). Journal of Agricultural and Food Chemistry, 63(33), 7371-7380.

Comparative chemical and biological investigations of β-glucan-containing products from shiitake mushrooms.

Gründemann, C., Garcia-Käufer, M., Sauer, B., Scheer, R., Merdivan, S., Bettin, P., Huber, R. & Lindequist, U. (2015). Journal of Functional Foods, 18, 692-702.

Nutritional composition, antioxidant properties, and toxicology evaluation of the sclerotium of Tiger Milk Mushroom Lignosus tigris cultivar E.

Kong, B. H., Tan, N. H., Fung, S. Y., Pailoor, J., Tan, C. S. & Ng, S. T. (2016). Nutrition Research, 36(2), 174-183.

Antibacterial and cytotoxic activities of wild mushroom Fomes fomentarius (L.) Fr., Polyporaceae.

Kolundžić, M., Grozdanić, N. Đ., Dodevska, M., Milenković, M., Sisto, F., Miani, A., Farronato, G. & Kundaković, T. (2016). Industrial Crops and Products, 79, 110-115.

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.