β-Glucosidase (Agrobacterium sp.) 

High purity β-Glucosidase (Agrobacterium sp.) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

EC 3.2.1.21
CAZy Family: GH1
CAS: 9001-22-3

beta-glucosidase; beta-D-glucoside glucohydrolase

Recombinant. Highly purified. From Agrobacterium sp.
In 3.2 M ammonium sulphate. Stabilised with BSA. Electrophoretically homogeneous (before BSA addition).
Supplied at ~ 400 U/mL. 

Specific activity:
~ 161 U/mg (40oC, pH 6.5 on p-nitrophenyl β-glucoside).

Stability:  > 4 years at 4oC.

Product Code
Content/size
Stock
Price
Qty
E-BGOSAG
600 Units
$226.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

DESCRIPTION

β-Glucosidase (Agrobacterium sp.)

EC 3.2.1.21
CAZy Family: GH1
CAS: 9001-22-3

Synonyms:
beta-glucosidase; beta-D-glucoside glucohydrolase

Form:
In 3.2 M ammonium sulphate (stabilised with BSA).

Stability: 
> 4 years at 4oC.

Specific activity:
~ 161 U/mg (40oC, pH 6.5 on p-nitrophenyl β-glucoside).

Unit definition:
One Unit of β-glucosidase activity is defined as the amount of enzyme required to release one µmole of of p-nitrophenol (pNP) per minute from p-nitrophenyl-β-D-glucopyranoside (10 mM) in sodium maleate buffer (50 mM), pH 6.5 at 40oC.

Specificity:
Hydrolysis of terminal, non-reducing β-D-glucosyl residues with release of β-D-glucose.

Applications:
Applications established in diagnostics and research within the food and feed, carbohydrate and biofuels industries.

Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail.

Del Pozo, M. V., Fernández-Arrojo, L., Gil-Martínez, J., Montesinos, A., Chernikova, T. N., Nechitaylo, T. Y., Waliszek, A., Tortajada, M., Rojas, A., Huws, S. A., Golyshina, O. V., Newbold, C. J., Polaina, J., Ferrer, M. & Golyshin, P. N. (2012). Biotechnology Biofuels, 5, 73.

Substrate specificities of glycosidases from Aspergillus species pectinase preparations on elderberry anthocyanins.

Pricelius, S., Murkovic, M., Souter, P. & Guebitz, G. M. (2009). Journal of Agricultural and Food Chemistry, 57(3), 1006-1012.

Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/ H2SO4 pretreatments in Miscanthus.

Li, F., Ren, S., Zhang, W., Xu, Z., Xie, G., Chen, Y., Tu, Y., Li, Q., Zhou, S., Li, Y., Tu, F., Liu, L., Wang, Y., Jiang, J., Qin, J., Li, S., Li, Q., Jing, H. C., Zhou, F., Gutterson, N. & Peng, L. (2013). Bioresource Technology, 130, 629-637.

A chromogenic assay for limit dextrinase and pullulanase activity.

Bøjstrup, M., Christensen, C. E., Windahl, M. S., Henriksen, A. & Hindsgaul, O. (2014). Analytical Biochemistry, 449, 45–51.

Conversion of Levoglucosan and Cellobiosan by Pseudomonas putida KT2440.

Linger, J. G., Hobdey, S. E., Franden, M. A., Fulk, E. M. & Beckham, G. T. (2016). Metabolic Engineering Communications, 3, 24-29.