Cellobiohydrolase I (Trichoderma longibrachiatum

High purity Cellobiohydrolase I (Trichoderma longibrachiatum) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

CAZy Family: GH7
CAS: 37329-65-0 

cellulose 1,4-beta-cellobiosidase (non-reducing end); 4-beta-D-glucan cellobiohydrolase (non-reducing end)

Highly purified. From Trichoderma longibrachiatum. Electrophoretically homogeneous (MW 65,000).
In 3.2 M ammonium sulphate.
Supplied at ~ 0.1 U/mg. 

Specific activity:
~ 0.1 U/mg (40oC, pH 4.5 on CM-cellulose 4M). Active on p-nitrophenyl-β-lactoside.

Stability: > 4 years at 4oC.

Product Code
20 mg

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page


Cellobiohydrolase I (Trichoderma longibrachiatum)

CAZy Family: GH7
CAS: 37329-65-0 

cellulose 1,4-beta-cellobiosidase (non-reducing end); 4-beta-D-glucan cellobiohydrolase (non-reducing end)

In 3.2 M ammonium sulphate.

> 4 years at 4oC.

Specific activity:
~ 0.1 U/mg (40oC, pH 4.5 on CM-cellulose 4M).

Unit definition:
One Unit of cellobiohydrolase I activity is defined as the amount of enzyme required to release one μmole of glucose-reducing-sugar equivalents per minute from CM-cellulose 4M (10 mg/mL) at pH 4.5 and 40oC.

Also active on pNP β-lactoside and pNP β-cellobioside where one Unit of cellobiohydrolase I activity is defined as the amount of enzyme required to release one μmole of p-nitrophenol from these substrates (2 mM) at pH 4.5 and 40oC.

Hydrolysis of (1,4)-β-D-glucosidic linkages in cellulose and cellotetraose, releasing cellobiose from the non-reducing ends of the chains. Also active on pNP β-lactoside and pNP β-cellobioside.

Applications established in diagnostics and research within the textiles, food and feed, carbohydrate and biofuels industries.

Genomic, Proteomic, and Biochemical Analyses of Oleaginous Mucor circinelloides: Evaluating Its Capability in Utilizing Cellulolytic Substrates for Lipid Production.

Wei, H., Wang, W., Yarbrough, J. M., Baker, J. O., Laurens, L., Van Wychen, S., Chen, X., Taylor II, L. E., Xu, Q., Himmel, M. E. & Zhang, M. (2013). PloS One, 8(9), e71068.

Assembling a cellulase cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production.

Chang, J. J., Ho, F. J., Ho, C. Y., Wu, Y. C., Hou, Y. H., Huang, C. C., Shih, M. C. & Li, W. H. (2013). Biotechnology Biofuels, 6(1), 19-31.

Consolidated pretreatment and hydrolysis of plant biomass expressing cell wall degrading enzymes.

Zhang, D., VanFossen, A. L., Pagano, R. M., Johnson, J. S., Parker, M. H., Pan, S., Gray, N. B., Hancock, E., Hagen, D. J., Lucero, H. A., Shen, B., Lessard, P. A., Ely, C., Moriarty, M., Ekborg, N. A., Bougri, O., Samoylov, V., Lazar, G. & Raab, R. M. (2011). BioEnergy Research, 4(4), 276-286.

Competitive sorption kinetics of inhibited endo-and exoglucanases on a model cellulose substrate.

Maurer, S. A., Bedbrook, C. N. & Radke, C. J. (2012). Langmuir, 28(41), 14598-14608.

Droplet-based microfluidic platform for heterogeneous enzymatic assays.

Chang, C., Sustarich, J., Bharadwaj, R., Chandrasekaran, A., Adams, P. D. & Singh, A. K. (2013). Lab Chip, 13(9), 1817-1822.

High-throughput enzymatic hydrolysis of lignocellulosic biomass via in-situ regeneration.

Bharadwaj, R., Wong, A., Knierim, B., Singh, S., Holmes, B. M., Auer, M., Simmons, B. A., Adams, P. D. & Singh, A. K. (2011). Bioresource Technology, 102(2), 1329-1337.

Surface kinetics for cooperative fungal cellulase digestion of cellulose from quartz crystal microgravimetry.

Maurer, S. A., Brady, N. W., Fajardo, N. P. & Radke, C. J. (2013). Journal of Colloid and Interface Science, 394, 498-508.

Domain engineering of Saccharomyces cerevisiae exoglucanases.

Moses, S. B. G., Otero, R. R. C. & Pretorius, I. S. (2005). Biotechnology Letters, 27(5), 355-362.

Dissecting and Reconstructing Synergism in situ visualization of cooperativity among cellulases.

Ganner, T., Bubner, P., Eibinger, M., Mayrhofer, C., Plank, H. & Nidetzky, B. (2012). Journal of Biological Chemistry, 287(52), 43215-43222.

New glycosidase substrates for droplet-based microfluidic screening.

Najah, M., Mayot, E., Mahendra-Wijaya, I. P., Griffiths, A. D., Ladame, S. & Drevelle, A. (2013). Analytical Chemistry, 85(20), 9807-9814.

Modified cellobiohydrolase-cellulose interactions following treatment with lytic polysaccharide monooxygenase CelS2 (ScLPMO10C) observed by QCM-D.

Selig, M. J., Vuong, T. V., Gudmundsson, M., Forsberg, Z., Westereng, B., Felby, C. & Master, E. R. (2015). Cellulose, 22(4), 2263-2270.

Comparative insights into the saccharification potentials of a relatively unexplored but robust Penicillium funiculosum glycoside hydrolase 7 cellobiohydrolase.

Ogunmolu, F. E., Jagadeesha, N. B. K., Kumar, R., Kumar, P., Gupta, D. & Yazdani, S. S. (2017). Biotechnology for Biofuels, 10(71).

Pure enzyme cocktails tailored for the saccharification of sugarcane bagasse pretreated by using different methods.

Kim, I. J., Lee, H. J. & Kim, K. H. (2017). Process Biochemistry, 57, 167-174.

Adsorption of Cellobiohydrolases I onto lignin fractions from dilute acid pretreated Broussonetia papyrifera.

Yao, L., Yang, H., Yoo, C. G., Meng, X., Li, M., Pu, Y., Ragauskas, A. J. & Sykes, R. W. (2017). Bioresource Technology, 244, 957-962.

Formulation of an optimized synergistic enzyme cocktail, HoloMix, for effective degradation of various pre-treated hardwoods.

Malgas, S., Chandra, R., Van Dyk, J. S., Saddler, J. N. & Pletschke, B. I. (2017). Bioresource Technology, 245, 52-65.

Real-time imaging reveals that lytic polysaccharide monooxygenase promotes cellulase activity by increasing cellulose accessibility.

Song, B., Li, B., Wang, X., Shen, W., Park, S., Collings, C., Feng, A., Smith, S. J., Walton, J. D. W. & Ding, S. Y. (2018). Biotechnology for Biofuels, 11(1), 41.

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.