Cellohexaose

CAS: 2478-35-5
Molecular Formula: C36H62O31
Molecular Weight: 990.9
Purity: > 95%

High purity Cellohexaose for use in research, biochemical enzyme assays and in vitro diagnostic analysis. 

1,4-β-gluco-hexaose.

Product Code
Content/size
Stock
Price
Qty
O-CHE
10 mg
$182.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research.

Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., Ralet, M. C., Farkas, V., Von Schantz, L., Marcus, S. E., Andersen, M.C. F., Field, R., Ohlin, M., Knox, J. P., Clausen, M. H. & Willats, W. G. T. (2012). Journal of Biological Chemistry, 287(47), 39429-39438.

A thermostable Gloeophyllum trabeum xylanase with potential for the brewing industry.

Wang, X., Luo, H., Yu, W., Ma, R., You, S., Liu, W., Hou, L., Zheng, F., Xie, X. & Yao, B. (2016). Food Chemistry, 199, 516-523.

β-Glucosidases from a new Aspergillus species can substitute commercial β-glucosidases for saccharification of lignocellulosic biomass.

Sørensen, A., Lübeck, P. S., Lübeck, M., Teller, P. J. & Ahring, B. K. (2011). Canadian Journal of Microbiology, 57(8), 638-650.

Functional diversity of four glycoside hydrolase family 3 enzymes from the rumen bacterium Prevotella bryantii B14.

Dodd, D., Kiyonari, S., Mackie, R. I. & Cann, I. K. O. (2010). Journal of Bacteriology, 192(9), 2335-2345.

The family 6 carbohydrate binding module CmCBM6-2 contains two ligand-binding sites with distinct specificities.

Henshaw, J. L., Bolam, D. N., Pires, V. M. R., Czjzek, M., Henrissat, B., Ferreira, L. M. A., Fontes. C. M. G. A. & Gilbert, H. J. (2004). Journal of Biological Chemistry, 279(20), 21552-21559.

Studies of enzymatic cleavage of cellulose using polysaccharide analysis by carbohydrate gel electrophoresis (PACE).

Kosik, O., Bromley, J. R., Busse-Wicher, M., Zhang, Z. & Dupree, P. (2012). Methods in Enzymology, 510, 51-67.

Isolation and identification of phenolic glucosides from thermally treated olive oil byproducts.

Rubio-Senent, F., Lama-Muñoz, A., Rodríguez-Gutiérrez, G. & Fernández-Bolaños, J. (2013). Journal of Agricultural and Food Chemistry, 61(6), 1235-1248.

Identification and characterization of plant cell wall degrading enzymes from three glycoside hydrolase families in the cerambycid beetle Apriona japonica.

Pauchet, Y., Kirsch, R., Giraud, S., Vogel, H. & Heckel, D. G. (2014). Insect Biochemistry and Molecular Biology, 49, 1-13.

Structure and Function of a Novel Cellulase 5 from Sugarcane Soil Metagenome.

Alvarez, T. M., Paiva, J. H., Ruiz, D. M., Cairo, J. P. L. F., Pereira, I. O., Paixão, D. A. A., de Almeida, R. F., Tonoli, C. C. C., Ruller, R., Santos, C. R., Squina, F. M. & Murakami, M. T. (2013). PloS one, 8(12), e83635.

Clostridium thermocellum cellulase CelT, a family 9 endoglucanase without an Ig-like domain or family 3c carbohydrate-binding module.

Kurokawa, J., Hemjinda, E., Arai, T., Kimura, T., Sakka, K. & Ohmiya, K. (2002). Applied Microbiology and Biotechnology, 59(4), 455-461.

Kinetics of the enzymatic cellulose hydrolysis by the endoglucanase from the extremophile S. solfataricus.

Bonhage, B., Seiferheld, B. & Spiess, A. C. (2013). In Kraslawski A, Turunen I (eds.). Proceedings of the 23rd European Symposium on Computer Aided Process Engineering, 23, 85-90.

A novel exo-cellulase from white spotted longhorn beetle (Anoplophora malasiaca).

Chang, C. J., Wu, C. P., Lu, S. C., Chao, A. L., Ho, T. H. D., Yu, S. M. & Chao, Y. C. (2012). Insect Biochemistry and Molecular Biology, 42(9), 629-636.

Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B.

Vuong, T. V. & Wilson, D. B. (2009). Applied and Environmental Microbiology, 75(21), 6655-6661.

Application of carbohydrate arrays coupled with mass spectrometry to detect activity of plant-polysaccharide degradative enzymes from the fungus Aspergillus niger.

van Munster, J. M., Thomas, B., Riese, M., Davis, A. L., Gray, C. J., Archer, D. B. & Flitsch, S. L. (2017). Scientific Reports, 7.

RP-UHPLC-UV-ESI-MS/MS analysis of LPMO generated C4-oxidized gluco-oligosaccharides after non-reductive labeling with 2-aminobenzamide.

Frommhagen, M., van Erven, G., Sanders, M., van Berkel, W. J., Kabel, M. A. & Gruppen, H. (2017). Carbohydrate Research, In Press.

Recombinant expression of thermostable processive MtEG5 endoglucanase and its synergism with MtLPMO from Myceliophthora thermophila during the hydrolysis of lignocellulosic substrates.

Karnaouri, A., Muraleedharan, M. N., Dimarogona, M., Topakas, E., Rova, U., Sandgren, M. & Christakopoulos, P. (2017). Biotechnology for Biofuels, 10(1), 126.

Characterization of a novel theme C glycoside hydrolase family 9 cellulase and its CBM-chimeric enzymes.

Duan, C. J., Huang, M. Y., Pang, H., Zhao, J., Wu, C. X. & Feng, J. X. (2017). Applied Microbiology and Biotechnology, 1-15.