Cellotriose

CAS: 33404-34-1
Molecular Formula: C18H32O16
Molecular Weight: 504.4
Purity: > 95%

High purity Cellotriose for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

1,4-β-D-Glucotriose.

Data booklets for each pack size are located in the Documentation tab.

Product Code
Content/Size
Stock
Price
Qty
O-CTR-50MG
50 mg
$201.00
O-CTR-100MG
100 mg
$326.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research.

Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., Ralet, M. C., Farkas, V., Von Schantz, L., Marcus, S. E., Andersen, M.C. F., Field, R., Ohlin, M., Knox, J. P., Clausen, M. H. & Willats, W. G. T. (2012). Journal of Biological Chemistry, 287(47), 39429-39438.

Xylo-oligosaccharides are competitive inhibitors of cellobiohydrolase I from Thermoascus aurantiacus.

Zhang, J. & Viikari, L. (2012). Bioresource Technology, 117, 286-291.

Altered substrate specificity of the gluco‐oligosaccharide oxidase from Acremonium strictum.

Foumani, M., Vuong, T. V. & Master, E. R. (2011). Biotechnology and Bioengineering, 108(10), 2261-2269.

Processivity, synergism, and substrate specificity of Thermobifida fusca Cel6B.

Vuong, T. V. & Wilson, D. B. (2009). Applied and Environmental Microbiology, 75(21), 6655-6661.

Clostridium thermocellum cellulase CelT, a family 9 endoglucanase without an Ig-like domain or family 3c carbohydrate-binding module.

Kurokawa, J., Hemjinda, E., Arai, T., Kimura, T., Sakka, K. & Ohmiya, K. (2002). Applied Microbiology and Biotechnology, 59(4), 455-461.

Thermostable carbohydrate‐binding modules in affinity chromatography.

Johansson, R., Gunnarsson, L. C., Ohlin, M. & Ohlson, S. (2006). Journal of Molecular Recognition, 19(4), 275-281.

Isolation and identification of phenolic glucosides from thermally treated olive oil byproducts.

Rubio-Senent, F., Lama-Muñoz, A., Rodríguez-Gutiérrez, G. & Fernández-Bolaños, J. (2013). Journal of Agricultural and Food Chemistry, 61(6), 1235-1248.

Sitosterol-β-glucoside as primer for cellulose synthesis in plants.

Peng, L., Kawagoe, Y., Hogan, P. & Delmer, D. (2002). Science, 295(5552), 147-150.

Two-stage statistical medium optimization for augmented cellulase production via solid-state fermentation by newly isolated Aspergillus niger HN-1 and application of crude cellulase consortium in hydrolysis of rice straw.

Sandhu, S. K., Oberoi, H. S., Babbar, N., Miglani, K., Chadha, B. & Nanda, D. (2013). Journal of Agricultural and Food Chemistry, 61(51), 12653–12661.

A novel exo-cellulase from white spotted longhorn beetle (Anoplophora malasiaca).

Chang, C. J., Wu, C. P., Lu, S. C., Chao, A. L., Ho, T. H. D., Yu, S. M. & Chao, Y. C. (2012). Insect Biochemistry and Molecular Biology, 42(9), 629-636.

Biochemical and mutational analyses of a multidomain cellulase/mannanase from Caldicellulosiruptor bescii.

Su, X., Mackie, R. I. & Cann, I. K. O. (2012). Applied and Environmental Microbiology, 78(7), 2230-2240.

Unraveling the secretome of Termitomyces clypeatus grown on agroresidues as a potential source for bioethanol production.

Mukherjee, S. & Khowala, S. (2016). Process Biochemistry, 51(11), 1793-1807.

Heterologous expression of a GH3 β-glucosidase from Neurospora crassa in Pichia pastoris with high purity and its application in the hydrolysis of soybean isoflavone glycosides.

Pei, X., Zhao, J., Cai, P., Sun, W., Ren, J., Wu, Q., Zhang, S. & Tian, C. (2016). Protein expression and Purification, 119, 75-84.

A thermostable Gloeophyllum trabeum xylanase with potential for the brewing industry.

Wang, X., Luo, H., Yu, W., Ma, R., You, S., Liu, W., Hou, L., Zheng, F., Xie, X. & Yao, B. (2016). Food Chemistry, 199, 516-523.

RP-UHPLC-UV-ESI-MS/MS analysis of LPMO generated C4-oxidized gluco-oligosaccharides after non-reductive labeling with 2-aminobenzamide.

Frommhagen, M., van Erven, G., Sanders, M., van Berkel, W. J., Kabel, M. A. & Gruppen, H. (2017). Carbohydrate Research, 448, 191-199.

Characterization of a novel theme C glycoside hydrolase family 9 cellulase and its CBM-chimeric enzymes.

Duan, C. J., Huang, M. Y., Pang, H., Zhao, J., Wu, C. X. & Feng, J. X. (2017). Applied Microbiology and Biotechnology, 1-15.

Hexagonal Boron Nitride for Adsorption of Saccharides.

Kobayashi, H. & Fukuoka, A. (2017). The Journal of Physical Chemistry C, 121(32), 17332-17338.

Biochemical and biophysical properties of a metagenome-derived GH5 endoglucanase displaying an unconventional domain architecture.

Pimentel, A. C., Ematsu, G. C., Liberato, M. V., Paixão, D. A., Cairo, J. P. L. F., Mandelli, F., Tramontina, R., Gandin, C. A., Oliveira, N., Squina, F. M. & Alvarez, T. M. (2017). International Journal of Biological Macromolecules, 99, 384-393.

HPAEC-PAD for oligosaccharide analysis—novel insights into analyte sensitivity and response stability.

Mechelke, M., Herlet, J., Benz, J. P., Schwarz, W. H., Zverlov, V. V., Liebl, W. & Kornberger, P. (2017). Analytical and Bioanalytical Chemistry, 1-13.