The product has been successfully added to your shopping list.
Cellotriose
Product code: O-CTR-50MG

Content:

€205.00

50 mg

Prices exclude VAT

Available for shipping

North American customers click here
Content: 50 mg or 100 mg
Shipping Temperature: Ambient
Storage Temperature: Ambient
Physical Form: Powder
Stability: > 2 years under recommended storage conditions
CAS Number: 33404-34-1
Molecular Formula: C18H32O16
Molecular Weight: 504.4
Purity: > 95%
Substrate For (Enzyme): endo-Cellulase

The O-CTR-100MG pack size has been discontinued (read more).

High purity Cellotriose for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

See our full list of oligosaccharide products for research.

Data booklets for each pack size are located in the Documents tab.

Publications
Megazyme publication

Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research.

Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., Ralet, M. C., Farkas, V., Von Schantz, L., Marcus, S. E., Andersen, M.C. F., Field, R., Ohlin, M., Knox, J. P., Clausen, M. H. & Willats, W. G. T. (2012). Journal of Biological Chemistry, 287(47), 39429-39438.

Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes.

Hide Abstract
Publication

Impact of Copper Saturation on Lytic Polysaccharide Monooxygenase Performance.

Østby, H., Tuveng, T. R., Stepnov, A. A., Vaaje-Kolstad, G., Forsberg, Z. & Eijsink, V. G. (2023). ACS Sustainable Chemistry & Engineering, 11(43), 15566-15576.

Lytic polysaccharide monooxygenases (LPMOs) are important for the effective depolymerization of recalcitrant polysaccharides. Despite their recognized importance, reported synergies with hydrolytic enzymes are often modest. We show that the kinetics of the LPMO-catalyzed depolymerization of chitin and cellulose are strongly affected by copper availability and the degree of enzyme copper saturation. Importantly, reactions with non-copper-saturated LPMOs are relatively slow but stable, which may be beneficial under industrial biomass processing conditions, whereas reactions with copper-saturated LPMOs are fast, but may lead to rapid enzyme inactivation. We show that this relates to the release of copper by damaged LPMOs that may be scavenged by apo-LPMOs, which then become activated. These effects of copper and copper saturation vary with the substrate concentration, which affects the rate of oxidative damage. We conclude that management of LPMO copper saturation and, perhaps, the use of copper chelators provides opportunities for optimizing the use of these powerful enzymes.

Hide Abstract
Publication

A conserved second sphere residue tunes copper site reactivity in lytic polysaccharide monooxygenases.

Hall, K. R., Joseph, C., Ayuso-Fernández, I., Tamhankar, A., Rieder, L., Skaali, R., Golten, O., Neese, F., Åsmund K., Røhr, A., Jannuzzi, S. A. V., DeBeer, S., EijsinkV. G. H. & Sørlie, M. (2023). Journal of the American Chemical Society, 145(34), 18888-18903.

Lytic polysaccharide monooxygenases (LPMOs) are powerful monocopper enzymes that can activate strong C–H bonds through a mechanism that remains largely unknown. Herein, we investigated the role of a conserved glutamine/glutamate in the second coordination sphere. Mutation of the Gln in NcAA9C to Glu, Asp, or Asn showed that the nature and distance of the headgroup to the copper fine-tune LPMO functionality and copper reactivity. The presence of Glu or Asp close to the copper lowered the reduction potential and decreased the ratio between the reduction and reoxidation rates by up to 500-fold. All mutants showed increased enzyme inactivation, likely due to changes in the confinement of radical intermediates, and displayed changes in a protective hole-hopping pathway. Electron paramagnetic resonance (EPR) and X-ray absorption spectroscopic (XAS) studies gave virtually identical results for all NcAA9C variants, showing that the mutations do not directly perturb the Cu(II) ligand field. DFT calculations indicated that the higher experimental reoxidation rate observed for the Glu mutant could be reconciled if this residue is protonated. Further, for the glutamic acid form, we identified a Cu(III)-hydroxide species formed in a single step on the H2O2 splitting path. This is in contrast to the Cu(II)-hydroxide and hydroxyl intermediates, which are predicted for the WT and the unprotonated glutamate variant. These results show that this second sphere residue is a crucial determinant of the catalytic functioning of the copper-binding histidine brace and provide insights that may help in understanding LPMOs and LPMO-inspired synthetic catalysts.

Hide Abstract
Publication

New colours for old in the blue-cheese fungus Penicillium roqueforti.

Cleere, M. M., Novodvorska, M., Geib, E., Whittaker, J., Dalton, H., Salih, N., Hewitt, S., Kokolski, M. Brock, M. & Dyer, P. S. (2024). npj Science of Food, 8(1), 3.

Penicillium roqueforti is used worldwide in the production of blue-veined cheese. The blue-green colour derives from pigmented spores formed by fungal growth. Using a combination of bioinformatics, targeted gene deletions, and heterologous gene expression we discovered that pigment formation was due to a DHN-melanin biosynthesis pathway. Systematic deletion of pathway genes altered the arising spore colour, yielding white to yellow-green to red-pink-brown phenotypes, demonstrating the potential to generate new coloured strains. There was no consistent impact on mycophenolic acid production as a result of pathway interruption although levels of roquefortine C were altered in some deletants. Importantly, levels of methyl-ketones associated with blue-cheese flavour were not impacted. UV-induced colour mutants, allowed in food production, were then generated. A range of colours were obtained and certain phenotypes were successfully mapped to pathway gene mutations. Selected colour mutants were subsequently used in cheese production and generated expected new colourations with no elevated mycotoxins, offering the exciting prospect of use in future cheese manufacture.

Hide Abstract
Publication

Heterologous expression and characterization of novel GH12 β-glucanase and AA10 lytic polysaccharide monooxygenase from Streptomyces megaspores and their synergistic action in cellulose saccharification.

Qin, X., Yang, K., Zou, J., Wang, X., Tu, T., Wang, Y., Su, X., Yao, B., Huang, H. & Luo, H. (2023). Biotechnology for Biofuels and Bioproducts, 16(1), 89.

Background: The combination of cellulase and lytic polysaccharide monooxygenase (LPMO) is known to boost enzymatic saccharification of cellulose. Although the synergy between cellulases (GH5, 6 or 7) and LPMOs (AA9) has been extensively studied, the interplay between other glycoside hydrolase and LPMO families remains poorly understood. Results: In this study, two cellulolytic enzyme-encoding genes SmBglu12A and SmLpmo10A from Streptomyces megaspores were identified and heterologously expressed in Escherichia coli. The recombinant SmBglu12A is a non-typical endo-β-1,4-glucanase that preferentially hydrolyzed β-1,3-1,4-glucans and slightly hydrolyzed β-1,4-glucans and belongs to GH12 family. The recombinant SmLpmo10A belongs to a C1-oxidizing cellulose-active LPMO that catalyzed the oxidation of phosphoric acid swollen cellulose to produce celloaldonic acids. Moreover, individual SmBglu12A and SmLpmo10A were both active on barley β-1,3-1,4-glucan, lichenan, sodium carboxymethyl cellulose, phosphoric acid swollen cellulose, as well as Avicel. Furthermore, the combination of SmBglu12A and SmLpmo10A enhanced enzymatic saccharification of phosphoric acid swollen cellulose by improving the native and oxidized cello-oligosaccharides yields. Conclusions: These results proved for the first time that the AA10 LPMO was able to boost the catalytic efficiency of GH12 glycoside hydrolases on cellulosic substrates, providing another novel combination of glycoside hydrolase and LPMO for cellulose enzymatic saccharification.

Hide Abstract
Publication

Utilization of dietary mixed-linkage β-glucans by the Firmicute Blautia producta.

Singh, R. P., Niharika, J., Thakur, R., Wagstaff, B. A., Kumar, G., Kurata, R., Patel, D., Levy, C. W., Miyazaki, T. & Field, R. A. (2023). Journal of Biological Chemistry, 299(6).

The β-glucans are structurally varied, naturally occurring components of the cell walls, and storage materials of a variety of plant and microbial species. In the human diet, mixed-linkage glucans [MLG - β-(1,3/4)-glucans] influence the gut microbiome and the host immune system. Although consumed daily, the molecular mechanism by which human gut Gram-positive bacteria utilize MLG largely remains unknown. In this study, we used Blautia producta ATCC 27340 as a model organism to develop an understanding of MLG utilization. B. producta encodes a gene locus comprising a multi-modular cell-anchored endo-glucanase (BpGH16MLG), an ABC transporter, and a glycoside phosphorylase (BpGH94MLG) for utilizing MLG, as evidenced by the upregulation of expression of the enzyme- and solute binding protein (SBP)-encoding genes in this cluster when the organism is grown on MLG. We determined that recombinant BpGH16MLG cleaved various types of β-glucan, generating oligosaccharides suitable for cellular uptake by B. producta. Cytoplasmic digestion of these oligosaccharides is then performed by recombinant BpGH94MLG and β-glucosidases (BpGH3-AR8MLG and BpGH3-X62MLG). Using targeted deletion, we demonstrated BpSBPMLG is essential for B. producta growth on barley β-glucan. Furthermore, we revealed that beneficial bacteria, such as Roseburia faecis JCM 17581T, Bifidobacterium pseudocatenulatum JCM 1200T, Bifidobacterium adolescentis JCM 1275T, and Bifidobacterium bifidum JCM 1254, can also utilize oligosaccharides resulting from the action of BpGH16MLG. Disentangling the β-glucan utilizing the capability of B. producta provides a rational basis on which to consider the probiotic potential of this class of organism.

Hide Abstract
Publication

Structural identification of carbohydrate isomers using ambient infrared-assisted dissociation.

Lai, Y. H., Leung, W., Chang, P. H., Zhou, W. X. & Wang, Y. S. (2023). Analytica Chimica Acta, 1264, 341307.

Informative dissociation of carbohydrates using an infrared (IR) irradiation system is demonstrated under ambient conditions without the instrumentation of a mass spectrometer. Structural identification of carbohydrates and associated conjugates is essential for understanding their biological functions, but identification remains challenging. Herein, an easy and rugged method is reported for the structural identification of model carbohydrates, including Globo-H, three trisaccharide isomers (nigerotriose/laminaritriose/cellotriose), and two hexasaccharide isomers (laminarihexaose/isomaltohexaose). For Globo-H, the numbers of cross-ring cleavages increased by factors of 4.4 and 3.4 upon ambient IR exposure, compared to an untreated control and a collision-induced dissociation (CID) sample. Moreover, 25-82% enhancement in the numbers of glycosidic bond cleavages upon ambient IR exposure was also obtained compared to untreated and CID samples. Unique features of first-generation fragments produced by ambient IR facilitated the differentiation of three trisaccharide isomers. Semi-quantitative analysis was achieved (coefficient of determination (R2) of 0.982) in a mixture of two hexasaccharide isomers via unique features generated upon ambient IR. Photothermal and radical migration effects induced by ambient IR were postulated as responsible for promoting carbohydrate fragmentation. This easy and rugged method could be a universally applicable protocol and complementary to other techniques for detailed structural characterization of carbohydrates.

Hide Abstract
Publication

AA16 Oxidoreductases Boost Cellulose-Active AA9 Lytic Polysaccharide Monooxygenases from Myceliophthora thermophila

Sun, P., Huang, Z., Banerjee, S., Kadowaki, M. A., Veersma, R. J., Magri, S., Hilgers, R., Muderspach, S. J., Laurent, C. V. F. P., Ludwig, R., Cannella, D., Leggio, L. L., van Berkel, W. J. H. & Kabel, M. A. (2023). ACS Catalysis, 13, 4454-4467.

Copper-dependent lytic polysaccharide monooxygenases (LPMOs) classified in Auxiliary Activity (AA) families are considered indispensable as synergistic partners for cellulolytic enzymes to saccharify recalcitrant lignocellulosic plant biomass. In this study, we characterized two fungal oxidoreductases from the new AA16 family. We found that MtAA16A from Myceliophthora thermophila and AnAA16A from Aspergillus nidulans did not catalyze the oxidative cleavage of oligo- and polysaccharides. Indeed, the MtAA16A crystal structure showed a fairly LPMO-typical histidine brace active site, but the cellulose-acting LPMO-typical flat aromatic surface parallel to the histidine brace region was lacking. Further, we showed that both AA16 proteins are able to oxidize low-molecular-weight reductants to produce H2O2. The oxidase activity of the AA16s substantially boosted cellulose degradation by four AA9 LPMOs from M. thermophila (MtLPMO9s) but not by three AA9 LPMOs from Neurospora crassa (NcLPMO9s). The interplay with MtLPMO9s is explained by the H2O2-producing capability of the AA16s, which, in the presence of cellulose, allows the MtLPMO9s to optimally drive their peroxygenase activity. Replacement of MtAA16A by glucose oxidase (AnGOX) with the same H2O2-producing activity could only achieve less than 50% of the boosting effect achieved by MtAA16A, and earlier MtLPMO9B inactivation (6 h) was observed. To explain these results, we hypothesized that the delivery of AA16-produced H2O2 to the MtLPMO9s is facilitated by protein–protein interaction. Our findings provide new insights into the functions of copper-dependent enzymes and contribute to a further understanding of the interplay of oxidative enzymes within fungal systems to degrade lignocellulose.

Hide Abstract
Publication

Chemical recycling of hemp waste textiles via the ionic liquid based dry-jet-wet spinning technology.

Rissanen, M., Schlapp-Hackl, I., Sawada, D., Raiskio, S., Ojha, K., Smith, E. & Sixta, H. (2022). Textile Research Journal, 00405175221143744.

The chemical recycling of hemp fabric into high-tenacity man-made cellulose fibers was demonstrated. The fabric was laundered 25 and 50 times to mimic the wear cycles of post-consumer textile waste. Despite the launderings, the molar mass of the material was still too high for recycling via dry-jet-wet spinning. Thus, the fabrics were treated with an aqueous sulfuric acid solution to adjust the intrinsic viscosity to the targeted level of 400-500 ml/g. The acid hydrolyzed sample was dissolved in 1,5-diazabicyclo[4.3.0]non-5-enium acetate and man-made cellulose fibers were regenerated by dry-jet-wet spinning. The properties of hemp and regenerated fibers were determined by tensile testing, birefringence measurements, and X-ray diffraction. Regenerated fibers were spun into yarn and knitted into a fabric. The tensile properties of the yarn and the abrasion and pilling resistance of the fabric were determined. Regenerated fibers showed a higher modulus of toughness (55.9 MPa) compared with hemp fibers (28.7 MPa). The fineness and staple length uniformity of regenerated fibers resulted in a high yarn structure evenness, a yarn tenacity of 28.1 cN/tex, and an elongation at break of 7.5%. Due to the even fabric structure, the fabric from regenerated fibers showed higher abrasion resistance than the hemp fabric.

Hide Abstract
Publication

Biological cellulose saccharification using a coculture of Clostridium thermocellum and Thermobrachium celere strain A9.

Nhim, S., Waeonukul, R., Uke, A., Baramee, S., Ratanakhanokchai, K., Tachaapaikoon, C., Pason, P., Liu, Ya-Jun, & Kosugi, A. (2022). Applied microbiology and Biotechnology, 106(5), 2133-2145.

An anaerobic thermophilic bacterial strain, A9 (NITE P-03545), that secretes β-glucosidase was newly isolated from wastewater sediments by screening using esculin. The 16S rRNA gene sequence of strain A9 had 100% identity with that of Thermobrachium celere type strain JW/YL-NZ35. The complete genome sequence of strain A9 showed 98.4% average nucleotide identity with strain JW/YL-NZ35. However, strain A9 had different physiological properties from strain JW/YL-NZ35, which cannot secrete β-glucosidases or grow on cellobiose as the sole carbon source. The key β-glucosidase gene (TcBG1) of strain A9, which belongs to glycoside hydrolase family 1, was characterized. Recombinant β-glucosidase (rTcBG1) hydrolyzed cellooligosaccharides to glucose effectively. Furthermore, rTcBG1 showed high thermostability (at 60°C for 2 days) and high glucose tolerance (IC50 = 0.75 M glucose), suggesting that rTcBG1 could be used for biological cellulose saccharification in cocultures with Clostridium thermocellum. High cellulose degradation was observed when strain A9 was cocultured with C. thermocellum in a medium containing 50 g/l crystalline cellulose, and glucose accumulation in the culture supernatant reached 35.2 g/l. In contrast, neither a monoculture of C. thermocellum nor coculture of C. thermocellum with strain JW/YL-NZ35 realized efficient cellulose degradation or high glucose accumulation. These results show that the β-glucosidase secreted by strain A9 degrades cellulose effectively in combination with C. thermocellum cellulosomes and has the potential to be used in a new biological cellulose saccharification process that does not require supplementation with β-glucosidases.

Hide Abstract
Safety Information
Symbol : Not Applicable
Signal Word : Not Applicable
Hazard Statements : Not Applicable
Precautionary Statements : Not Applicable
Safety Data Sheet
Customers also viewed
Total Starch Assay Kit AA/AMG K-TSTA TSTA
Total Starch Assay Kit (AA/AMG)
€297.00
Xylan Beechwood P-XYLNBE
Xylan (Beechwood)
€164.00
Cellopentaose O-CPE
Cellopentaose
€174.00
Cellotetraose O-CTE
Cellotetraose
€236.00
Arabinoxylan Wheat Flour Low Viscosity P-WAXYL
Arabinoxylan (Wheat Flour; Low Viscosity)
€205.00
Urea Ammonia Assay Kit Rapid K-URAMR URAMR
Urea/Ammonia Assay Kit (Rapid)
€184.00
Total Sulfite Assay Kit Enzymatic K-ETSULPH ETSULPH
Total Sulfite Assay Kit (Enzymatic)
€197.00
Total Starch Control Flours K-TSCK TSCK
Total Starch Control Flours
€187.00