Cellulase (endo-1,4-β-D-glucanase) (Trichoderma longibrachiatum

High purity Cellulase (endo-1,4-β-D-glucanase) (Trichoderma longibrachiatum) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

EC 3.2.1.4
CAZy Family: GH7
CAS: 9012-54-8

cellulase; 4-beta-D-glucan 4-glucanohydrolase

Highly purified. From Trichoderma longibrachiatum
In 3.2 M ammonium sulphate.
Supplied at ~ 700 U/mL. 

Specific activity:
~ 70 U/mg (40oC, pH 4.5 on CM-cellulose 4M). 

Stability: > 4 years at 4oC.

Product Code
Content/size
Stock
Price
Qty
E-CELTR
1,000 Units
$199.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

DESCRIPTION

Cellulase (endo-1,4-β-D-glucanase) (Trichoderma longibrachiatum)

EC 3.2.1.4
CAZy Family: GH7
CAS: 9012-54-8

Synonyms:
cellulase; 4-beta-D-glucan 4-glucanohydrolase

Form:
In 3.2 M ammonium sulphate.

Stability: 
> 4 years at 4oC.

Specific activity:
~ 70 U/mg (40oC, pH 4.5 on CM-cellulose 4M).

Unit definition:
One Unit of cellulase activity is defined as the amount of enzyme required to release one μmole of glucose reducing-sugar equivalents per minute from CM-Cellulose 4M (10 mg/mL) in sodium acetate buffer (100 mM), pH 4.5 at 40oC.

Specificity:
endo-hydrolysis of (1,4)-β-D-glucosidic linkages in cellulose.

Applications:
Applications established in diagnostics and research within the textiles, food and feed, carbohydrate and biofuels industries.

Measurement of endo-1,4-β-glucanase.

McCleary, B. V., McKie, V. & Draga, A. (2012). “Methods in Enzymology”, Volume 510, (H. Gilbert, Ed.), Elsevier Inc., pp. 1-17.

Measurement of polysaccharide-degrading enzymes in plants using chromogenic and colorimetric substrates.

McCleary, B. V. (1995). “New Diagnostics in Crop Sciences”, (J. R. Skerritt and R. Appels, Eds.), CAB International, pp. 277-301.

New developments in the measurement of α-amylase, endo-protease, β-glucanase and β-xylanase.

McCleary, B. V. & Monaghan, D. (2000). “Proceedings of the Second European Symposium on Enzymes in Grain Processing”, (M. Tenkanen, Ed.), VTT Information Service, pp. 31-38.

Measurement of polysaccharide degrading enzymes using chromogenic and colorimetric substrates.

McCleary, B. V. (1991). Chemistry in Australia, September, 398-401.

The reb1-1 mutation of Arabidopsis. Effect on the structure and localization of galactose-containing cell wall polysaccharides.

Nguema-Ona, E., Andème-Onzighi, C., Aboughe-Angone, S., Bardor, M., Ishii, T., Lerouge, P. & Driouich, A. (2006). Plant Physiology, 140(4), 1406-1417.

Structural investigation of hemicellulosic polysaccharides from Argania spinosa: characterisation of a novel xyloglucan motif.

Ray, B., Loutelier-Bourhis, C., Lange, C., Condamine, E., Driouich, A. & Lerouge, P. (2004). Carbohydrate Research, 339(2), 201-208.

Dietary fibers from mushroom sclerotia: 3. In vitro fermentability using human fecal microflora.

Wong, K. H., Wong, K. Y., Kwan, H. S. & Cheung, P. C. K. (2005). Journal of Agricultural and Food Chemistry, 53(24), 9407-9412.

α-Fucosidases with different substrate specificities from two species of Fusarium.

Paper, J. M., Scott-Craig, J. S., Cavalier, D., Faik, A., Wiemels, R. E., Borrusch, M. S., Bongers, M. & Walton, J. D. (2013). Applied Microbiology and Biotechnology, 97(12), 5371-5380.

Biochemical analysis of expansin-like proteins from microbes.

Georgelis, N., Nikolaidis, N. & Cosgrove, D. J. (2014). Carbohydrate Polymers, 100, 17-23.

KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis.

Pagant, S., Bichet, A., Sugimoto, K., Lerouxel, O., Desprez, T., McCann, M., Lerouge, P., Vernhettes, S. & Höfte, H. (2002). The Plant Cell, 14(9), 2001-2013.

Preparation of oligomeric β-glycosides from cellulose and hemicellulosic polysaccharides via the glycosyl transferase activity of a Trichoderma reesei cellulase.

York, W. S. & Hawkins, R. (2000). Glycobiology, 10(2), 193-201.

Saccharification of cellulose by recombinant Rhodococcus opacus PD630 strains.

Hetzler, S., Bröker, D. & Steinbüchela, A. (2013). Applied and Environmental Microbiology, 79(17), 5159-5166.

Regulation of the cellulose synthase-like gene family by light in the maize mesocotyl.

Van Erp, H. & Walton, J. D. (2009). Planta, 229(4), 885-897.

Cloning of a GH5 endoglucanase from genus Penicillium and its binding to different lignins.

Krogh, K. B. R. M., Kastberg, H., Jørgensen, C. I., Berlin, A., Harris, P. V. & Olsson, L. (2009). Enzyme and Microbial Technology, 44(6), 359-367.

Functional genomic analysis supports conservation of function among cellulose synthase-like A gene family members and suggests diverse roles of mannans in plants.

Liepman, A. H., Nairn, C. J., Willats, W. G. T., Sørensen, I., Roberts, A. W. & Keegstra, K. (2007). Plant Physiology, 143(4), 1881-1893.

Cellulolytic RoboLector – towards an automated high-throughput screening platform for recombinant cellulase expression.

Mühlmann, M., Kunze, M., Ribeiro, J., Geinitz, B., Lehmann, C., Schwaneberg, U., Commandeur, U. & Büchs, J. (2017). Journal of Biological Engineering, 11(1), 1.

Time-dependent viscometry study of endoglucanase action on xyloglucan: a real-time approach.

Spier, V. C., Sierakowski, M. R., Ibrahim, A. T., Baum, J. C. S., Silveira, J. L. M. & de Freitas, R. A. (2015). International Journal of Biological Macromolecules, 81, 461-466.

Transient and quasi-permanent networks in xyloglucan solutions.

de Freitas, R. A., Spier, V. C., Sierakowski, M. R., Nicolai, T., Benyahia, L. & Chassenieux, C. (2015). Carbohydrate Polymers, 129, 216-223.

Remodeling of pectin and hemicelluloses in tomato pericarp during fruit growth.

Guillon, F., Moïse, A., Quemener, B., Bouchet, B., Devaux, M. F., Alvarado, C. & Lahaye, M. (2017). Plant Science, 257, 48-62.

Pure enzyme cocktails tailored for the saccharification of sugarcane bagasse pretreated by using different methods.

Kim, I. J., Lee, H. J. & Kim, K. H. (2017). Process Biochemistry, In press.

Cell separation in kiwifruit without development of a specialised detachment zone.

Prakash, R., Hallett, I. C., Wong, S. F., Johnston, S. L., O’Donoghue, E. M., McAtee, P. A., Seal, A. G., Atkinson, R. G. & Schröder, R. (2017). BMC Plant Biology, 17(1), 86.

Characterization of a novel thermostable GH45 endoglucanase from Chaetomium thermophilum and its biodegradation of pectin.

Zhou, Q., Ji, P., Zhang, J., Li, X. & Han, C. (2017). Journal of Bioscience and Bioengineering, In press.

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.

FAQs