D-Lactic Acid (D-Lactate) (Rapid) Assay Kit

The D-Lactic Acid (D-Lactate) (Rapid) test kit is suitable for the rapid, specific measurement and analysis of D-lactic acid in wine, beer, juice, milk, cheese, vinegar, meat and other food products.

Extended cofactors stability. Dissolved cofactors stable for > 1 year at 4oC.

Suitable for manual, auto-analyser and microplate formats.

Image unavailable
Product Code
50 assays (manual) / 500 assays (microplate)
/ 450 assays (auto-analyser)

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

UV-method for the determination of D-Lactic Acid in foodstuffs,
beverages and other materials

                       (D-lactate dehydrogenase)
(1) D-Lactic acid + NAD+ ↔ pyruvate + NADH + H+

                   (glutamate-pyruvate transaminase)
(2) Pyruvate + D-glutamate → D-alanine + 2-oxoglutarate

Kit size:                             * 50 assays (manual) / 500 (microplate)
                                          / 450 (auto-analyser)

The number of manual tests per kit can be doubled if all volumes are halved. 
This can be readily accommodated using the MegaQuantTM 
Spectrophotometer (D-MQWAVE).

Method:                            Spectrophotometric at 340 nm
Reaction time:                  ~ 5 min
Detection limit:                 0.21 mg/L
Application examples:
Wine, soft drinks, milk, dairy products (e.g. cream, milk / whey powder,
cheese, condensed milk and yogurt), foods containing milk (e.g. dietetic
foods, bakery products, baby food, chocolate, sweets and ice-cream),
vinegar, fruit and vegetables, processed fruit and vegetables, meat
products, food additives, paper (and cardboard), cosmetics,
pharmaceuticals and other materials (e.g. biological cultures, samples, etc.)
Method recognition:    
Methods based on this principle have been accepted by DIN, GOST,


  • Very rapid reaction with most samples (~ 5 min)
  • Very competitive price (cost per test)
  • All reagents stable for > 2 years after preparation
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing
  • Standard included
  • Extended cofactors stability
  • Suitable for manual, microplate and auto-analyser formats

Grape and wine analysis: Oenologists to exploit advanced test kits.

Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.

Megazyme “advanced” wine test kits general characteristics and validation.

Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.

Production of L-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli.

Nguyen, C. M., Kim, J. S., Hwang, H. J., Park, M. S., Choi, G. J., Choi, Y. H., Jang, K. S. & Kim, J. C. (2012). Bioresource Technology, 110, 552-559.

D-Lactic acid production from dry biomass of Hydrodictyon reticulatum by simultaneous saccharification and co-fermentation using Lactobacillus coryniformis subsp. torquens.

Nguyen, C. M., Kim, J. S., Song, J. K., Choi, G. J., Choi, Y. H., Jang, K. S. & Kim, J. C. (2012). Biotechnology Letters, 34(12), 2235-2240.

Modelling the Effect of Different Substrates and Temperature on the Growth and Lactic Acid Production by Lactobacillus amylovorus DSM 20531T in Batch Process.

Trontel, A., Baršić, V., Slavica, A., Santek, B. & Novak, S. (2010). Food Technology & Biotechnology, 48(3), 351-361.

Engineering a cyanobacterial cell factory for production of lactic acid.

Angermayr, S. A., Paszota, M. & Hellingwerf, K. J. (2012). Applied and Environmental Microbiology, 78(19), 7098-7106.

Sourdough-leavened bread improves postprandial glucose and insulin plasma levels in subjects with impaired glucose tolerance.

Maioli, M., Pes, G. M., Sanna, M., Cherchi, S., Dettori, M., Manca, E. & Farris, G. A. (2008). Acta Diabetologica, 45(2), 91-96.

Homo-fermentative production of D-lactic acid by Lactobacillus sp. employing casein whey permeate as a raw feed-stock.

Prasad, S., Srikanth, K., Limaye, A. M. & Sivaprakasam, S. (2014). Biotechnology Letters, 36(6) 1303-1307.

Effect of thermal processing during yogurt production upon the detection of staphylococcal enterotoxin B.

Principato, M., Boyle, T., Njoroge, J., Jones, R. L. & O'Donnell, M. (2009). Journal of Food Protection®, 72(10), 2212-2216.

The effect of ciliate fauna composition on murein content and mureinolytic activity in the rumen of sheep.

Bełżecki, G., Miltko, R., Kwiatkowska, E., Kowalik, B. & Michałowski, T. (2012). Journal of Animal and Feed Sciences, 21(1), 65-76.

Solid state fermentation with lactic acid bacteria to improve the nutritional quality of lupin and soybean.

Bartkiene, E., Krungleviciute, V., Juodeikiene, G., Vidmantiene, D. & Maknickiene, Z. (2015). Journal of the Science of Food and Agriculture, 95(6), 1336-1342.

Markers of perioperative bowel complications in colorectal surgery patients.

Hyšpler, R., Tichá, A., Kaška, M., Žaloudková, L., Plíšková, L., Havel, E. & Zadák, Z. (2015). Disease Markers, 2015, Article ID 428535.

Long-term adaptive evolution of Leuconostoc mesenteroides for enhancement of lactic acid tolerance and production.

Ju, S. Y., Kim, J. H. & Lee, P. C. (2016). Biotechnology for Biofuels, 9(1), 240.

The Use of Lactic Acid Bacteria in the Fermentation of Fruits and Vegetables - Technological and Functional Properties.

Urbonaviciene, D., Viskelis, P., Bartkiene, E., Juodeikiene, G. & Daiva Vidmantiene, D. (2015). Biochemistry, Genetics and Molecular Biology, Biotechnology, Chapter 7.

Are serum amyloid A or D-lactate useful to diagnose synovial contamination or sepsis in horses?.

Robinson, C. S., Singer, E. R., Piviani, M. & Rubio-Martinez, L. M. (2017). Veterinary Record, vetrec-2017.

Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system.

Nzeteu, C. O., Trego, A. C., Abram, F. & O’Flaherty, V. (2018). Biotechnology for Biofuels, 11(1), 108.

Sharpea and Kandleria are lactic acid producing rumen bacteria that do not change their fermentation products when co-cultured with a methanogen.

Kumar, S., Treloar, B. P., Teh, K. H., McKenzie, C. M., Henderson, G., Attwood, G. T., Waters, S. M., Patchett, M. L. & Janssen, P. H. (2018). Anaerobe, 54, 31-38.

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.