D-Xylose Assay Kit

The D-Xylose test kit is a novel method for the specific, convenient and rapid measurement and analysis of D-xylose in plant extracts, culture media/supernatants and other materials.

Suitable for manual, auto-analyser and microplate formats.

D-Xylose Assay Kit
Product Code
100 assays (manual) / 1000 assays (microplate)
/ 1300 assays (auto-analyser)

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

UV-method for the determination of D-Xylose in fermentation
broths and hydrolysates of plant material and polysaccharides

          (xylose mutarotase)
(1) α-D-Xylose ↔ β-D-xylose

                    (β-xylose dehydrogenase)
(2) β-D-Xylose + NAD+ → D-xylonic acid + NADH + H+

Kit size:                             * 100 assays (manual) / 1000 (microplate)
                                           / 1300 (auto-analyser)

The number of manual tests per kit can be doubled if all volumes are halved. 
This can be readily accommodated using the MegaQuantTM Wave
Spectrophotometer (D-MQWAVE).

Method:                             Spectrophotometric at 340 nm
Reaction time:                   ~ 6 min
Detection limit:                 0.7 mg/L
Application examples:
Analysis of D-xylose in fermentation broths and hydrolysates of plant
material and polysaccharides
Method recognition:   Novel method


  • Very cost effective
  • All reagents stable for > 2 years after preparation
  • Only enzymatic kit available
  • Rapid reaction (~ 6 min)
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing
  • Standard included
  • Suitable for manual, microplate and auto-analyser formats

The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse.

de Souza, W. R., Maitan-Alfenas, G. P., de Gouvêa, P. F., Brown, N. A., Savoldi, M., Battaglia, E., Goldman, M. H. S., de Vries, R. P. & Goldman, G. H. (2013). Fungal Genetics and Biology, 60, 29-45.

A high-throughput platform for screening milligram quantities of plant biomass for lignocellulose digestibility.

Santoro, N., Cantu, S. L., Tornqvist, C. E., Falbel, T. G., Bolivar, J. L., Patterson, S. E., Pauly, M. & Walton, J. D. (2010). BioEnergy research, 3(1), 93-102.

Fast enzymatic saccharification of switchgrass after pretreatment with ionic liquids.

Zhao, H., Baker, G. A. & Cowins, J. V. (2010). Biotechnology progress, 26(1), 127-133.

Switching Clostridium acetobutylicum to an ethanol producer by disruption of the butyrate/butanol fermentative pathway.

Lehmann, D. & Lütke-Eversloh, T. (2011). Metabolic Engineering, 13(5), 464-473.

Process characterization and influence of alternative carbon sources and carbon-to-nitrogen ratio on organic acid production by Aspergillus oryzae DSM1863.

Ochsenreither, K., Fischer, C., Neumann, A. & Syldatk, C. (2014). Applied Microbiology and Biotechnology, 98(12), 5449-5460.

Characterization of newly isolated oleaginous yeasts - Cryptococcus podzolicus, Trichosporon porosum and Pichia segobiensis.

Schulze, I., Hansen, S., Großhans, S., Rudszuck, T., Ochsenreither, K., Syldatk, C. & Neumann, A. (2014). AMB Express, 4, 24.

Characterisation of dietary fibre components in cereals and legumes used in Serbian diet.

Dodevska, M. S., Djordjevic, B. I., Sobajic, S. S., Miletic, I. D., Djordjevic, P. B. & Dimitrijevic-Sreckovic, V. S. (2013). Food chemistry, 141(3), 1624-1629.

Key residues in subsite F play a critical role in the activity of Pseudomonas fluorescens subspecies cellulosa xylanase A against xylooligosaccharides but not against highly polymeric substrates such as xylan.

Charnock, S. J., Lakey, J. H., Virden, R., Hughes, N., Sinnott, M. L., Hazlewood, G. P., Pickersgill, R. & Gilbert, H. J. (1997). The Journal of Biological Chemistry, 272(5), 2942-2951.

Simultaneous uptake of lignocellulose‐based monosaccharides by Escherichia coli.

Jarmander, J., Hallström, B. M. & Larsson, G. (2014). Biotechnology and Bioengineering, 111(6), 1108-1115.

Penicillium purpurogenum produces two GH family 43 enzymes with β-xylosidase activity, one monofunctional and the other bifunctional: Biochemical and structural analyses explain the difference.

Ravanal, M. C., Alegría-Arcos, M., Gonzalez-Nilo, F. D. & Eyzaguirre, J. (2013). Archives of Biochemistry and Biophysics, 540(1-2), 117-124.

Development and testing of a novel lab-scale direct steam-injection apparatus to hydrolyse model and saline crop slurries.

Guglielmo, S., Dalessandro, A., Maurizio, P., Silvia, C., Maurizio, R., Riccardo, V. & Moresi, M. (2012). Journal of Biotechnology, 157(4), 590-597.

Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse.

van den Brink, J., Maitan-Alfenas, G. P., Zou, G., Wang, C., Zhou, Z., Guimarães, V. M. & de Vries, R. P. (2014). Biotechnology Journal, 9(10), 1329-1338.

Co-fermentation of acetate and sugars facilitating microbial lipid production on acetate-rich biomass hydrolysates.

Gong, Z., Zhou, W., Shen, H., Yang, Z., Wang, G., Zuo, Z., Hou. Y. & Zhao, Z. K. (2016). Bioresource technology, 207, 102-108.

Effects of an acid/alkaline treatment on the release of antioxidants and cellulose from different agro-food wastes.

Vadivel, V., Moncalvo, A., Dordoni, R. & Spigno, G. (2017). Waste Management, 64, 305-314.

Strategic optimization of xylanase-mannanase combi-CLEAs for synergistic and efficient hydrolysis of complex lignocellulosic substrates.

Bhattacharya, A. & Pletschke, B. I. (2015). Journal of Molecular Catalysis B: Enzymatic, 115, 140-150.

Ethanol effect on metabolic activity of the ethalogenic fungus Fusarium oxysporum.

Paschos, T., Xiros, C. & Christakopoulos, P. (2015). BMC biotechnology, 15(1), 15.

Simultaneous bioethanol distillery wastewater treatment and xylanase production by the phyllosphere yeast Pseudozyma antarctica GB-4 (0).

Watanabe, T., Suzuki, K., Sato, I., Morita, T., Koike, H., Shinozaki, Y., Ueda, H., Koitabashi, M. & Kitamoto, H. K. (2015). AMB Express, 5(1), 36.

Novel pH-stable glycoside hydrolase family 3 β-xylosidase from Talaromyces amestolkiae: an enzyme displaying regioselective transxylosylation.

Nieto-Domínguez, M., De Eugenio, L. I., Barriuso, J., Prieto, A., de Toro, B. F., Canales-Mayordomo, Á. & Martínez, M. J. (2015). Applied and environmental Microbiology, 81(18), 6380-6392.

Pressure Effects on Lignocellulose‐Degrading Enzymes.

Kirsch, C., Surendran, S. & Smirnova, I. (2016). Chemical Engineering & Technology, 39(4), 786-790.

Exogenous RNA interference exposes contrasting roles for sugar exudation in host-finding by plant pathogens.

Warnock, N. D., Wilson, L., Canet-Perez, J. V., Fleming, T., Fleming, C. C., Maule, A. G. & Dalzell, J. J. (2016). International Journal for Parasitology, 46(8), 473-477.

Development of a new method for D-xylose detection and quantification in urine, based on the use of recombinant xylose dehydrogenase from Caulobacter crescentus.

Sánchez-Moreno, I., García-Junceda, E., Hermida, C. & Fernández-Mayoralas, A. (2016). Journal of Biotechnology, 234, 50-57.

Direct Ethanol Production from Ionic Liquid-Pretreated Lignocellulosic Biomass by Cellulase-Displaying Yeasts.

Yamada, R., Nakashima, K., Asai-Nakashima, N., Tokuhara, W., Ishida, N., Katahira, S., Kamiya, N., Ogino, C. & Kondo, A. (2017). Applied Biochemistry and Biotechnology, 182(1), 229-237.

Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments.

Daly, P., Munster, J. M., Blythe, M. J., Ibbett, R., Kokolski, M., Gaddipati, S. et al. (2017). Biotechnology for Biofuels, 10(1), 35.

GH11 xylanase increases prebiotic oligosaccharides from wheat bran favouring butyrate-producing bacteria in vitro.

Ravn, J. L., Thøgersen, J. C., Eklöf, J., Pettersson, D., Ducatelle, R., van Immerseel, F. & Pedersen, N. R. (2017). Animal Feed Science and Technology, 226, 113-123.

Improvement of ectoine productivity by using sugar transporter-overexpressing Halomonas elongata.

Tanimura, K., Matsumoto, T., Nakayama, H., Tanaka, T. & Kondo, A. (2016). Enzyme and Microbial Technology, 89, 63-68.

Characterization of a novel pH-stable GH3 β-xylosidase from Talaromyces amestolkiae: An enzyme displaying regioselective transxylosylation.

Nieto-Domínguez, M., de Eugenio, L. I., Barriuso, J., Prieto, A., de Toro, B. F., Canales-Mayordomo, Á. & Martínez, M. J. (2015). Applied and Environmental Microbiology, AEM-01744.

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.