D-/L-Lactic Acid (D-/L-Lactate) (Rapid) Assay Kit

The D-/L-Lactic Acid (D-/L-Lactate) (Rapid) test kit is used for the rapid and specific concurrent measurement and analysis of L-lactic acid (L-lactate) and D-lactic acid (D-lactate) in beverages, meat, dairy and food products.

Extended cofactors stability. Dissolved cofactors stable for > 1 year at 4oC.

Image unavailable
Product Code
100 assays (50 of each) per kit

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

UV-method for the determination of D-/L-Lactic Acid in
foodstuffs, beverages and other materials

                        (D-lactate dehydrogenase)
(1) D-Lactic acid + NAD+ ↔ pyruvate + NADH + H+

                      (glutamate-pyruvate transaminase)
(2) Pyruvate + D-glutamate → D-alanine + 2-oxoglutarate

                     (L-lactate dehydrogenase)
(3) L-Lactic acid + NAD+  pyruvate + NADH + H+

Kit size:                           * 50 assays of each

The number of manual tests per kit can be doubled if all volumes are halved. 
This can be readily accommodated using the MegaQuantTM 
Spectrophotometer (D-MQWAVE).

Method:                           Spectrophotometric at 340 nm
Reaction time:                ~ 10 min (L-lactic acid) and ~ 5 min (D-lactic acid)
Detection limit:               0.21 mg/L
Application examples:
Wine, soft drinks, milk, dairy products, foods containing milk (e.g. dietetic
foods, bakery products, baby food, chocolate, sweets and ice-cream),
vinegar, fruit and vegetables, processed fruit and vegetables, meat
products, food additives, paper (and cardboard), cosmetics, pharmaceuticals
and other materials (e.g. biological cultures, samples, etc.)
Method recognition:    
Methods based on this principle have been accepted by DIN, GOST,


  • Rapid total analysis time (concurrent / flexible D and L-lactic acid reaction format)
  • D-lactate dehydrogenase reaction very rapid with most samples (~ 5 min)
  • Very competitive price (cost per test)
  • All reagents stable for > 2 years after preparation
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing
  • Standard included
  • Extended cofactors stability

Grape and wine analysis: Oenologists to exploit advanced test kits.

Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.

Megazyme “advanced” wine test kits general characteristics and validation.

Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.

Microbial and physicochemical succession in fermented sausages produced with bacteriocinogenic culture of Lactobacillus sake and semi-purified bacteriocin mesenterocin Y.

Zdolec, N., Hadžiosmanović, M., Kozačinski, L., Cvrtila, Ž., Filipović, I., Škrivanko, M. & Leskovar, K. (2008). Meat Science, 80(2), 480-487.

Effects of yeast extract and different amino acids on the dynamics of some components in cabbage juice during fermentation with Bifidobacterium lactis BB-12.

Buruleanu, C. L., Nicolescu, C. L., Avram, D., Manea, I. & Bratu, M. G. (2012). Food Science and Biotechnology, 21(3), 691-699.

Heterofermentative process in dry fermented sausages-a case report.

Kameník, J., Dušková, M., Saláková, A. & Šedo, O. (2013). Acta Veterinaria Brno, 82(2), 181-186.

Effects of harvest date, wilting and inoculation on yield and forage quality of ensiling safflower (Carthamus tinctorius L.) biomass.

Cazzato, E., Laudadio, V., Corleto, A. & Tufarelli, V. (2011). Journal of the Science of Food and Agriculture, 91(12), 2298-2302.

Modelling the Effect of Different Substrates and Temperature on the Growth and Lactic Acid Production by Lactobacillus amylovorus DSM 20531T in Batch Process.

Trontel, A., Baršić, V., Slavica, A., Santek, B. & Novak, S. (2010). Food Technology & Biotechnology, 48(3), 352-361.

Lactose fermentation by Kombucha – a process to obtain new milk–based beverages.

Iličić, M., Kanurić, K., Milanović, S., Lončar, E., Djurić, M. & Malbaša, R. (2012). Romanian Biotechnological Letters, 17(1), 7013-7021.

Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2.

Zhao, K., Qiao, Q., Chu, D., Gu, H., Dao, T. H., Zhang, J. & Bao, J. (2013). Bioresource Technology, 135, 481-489.

Biohydrogen and methane production from cheese whey in a two-stage anaerobic process.

Antonopoulou, G., Stamatelatou, K., Venetsaneas, N., Kornaros, M. & Lyberatos, G. (2008). Industrial & Engineering Chemistry Research, 47(15), 5227-5233.

Production of functional Ricotta Cheese.

Niro, S., Succi, M., Cinquanta, L., Fratianni, A., Tremonte, P., Sorrentino, E. & Panfili, G. (2013), Dairy Ingredients, 24(6), 56-59.

Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue.

Mitsumori, M., Shinkai, T., Takenaka, A., Enishi, O., Higuchi, K., Kobayashi, Y., Nonaka, I., Asanuma, N., Denman, S. E. & McSweeney, C. S. (2012). British Journal of Nutrition, 108(03), 482-491.

The effect of transglutaminase on rheology and texture of fermented milk products.

Iličić, M. D., Milanović, S. D., Carić, M. Ð., Vukić, V. R., Kanurić, K. G., Ranogajec, M. I. & Hrnjez, D. V. (2013). Journal of Texture Studies, 44(2), 160-168.

Bifidobacterium commune sp. nov. isolated from the bumble bee gut.

Praet, J., Meeus, I., Cnockaert, M., Aerts, M., Smagghe, G. & Vandamme, P. (2015). Antonie Van Leeuwenhoek, 107(5), 1307-1313.

Novel lactic acid bacteria isolated from the bumble bee gut: Convivina intestini gen. nov., sp. nov., Lactobacillus bombicola sp. nov., and Weissella bombi sp. nov.

Praet, J., Meeus, I., Cnockaert, M., Houf, K., Smagghe, G. & Vandamme, P. (2015). Antonie van Leeuwenhoek, 107(5), 1337-1349.

Hyper glucansucrase, glucan and oligosaccharide producing novel Weissella cibaria RBA12 isolated from Pummelo (Citrus maxima).

Baruah, R. & Goyal, A. (2015). Annals of Microbiology, 65(4), 2301-2310.

Development of a multi‐parameter sensor chip for the simultaneous detection of organic compounds in biogas processes.

Pilas, J., Iken, H., Selmer, T., Keusgen, M. & Schöning, M. J. (2015). Physica Status Solidi (a) , 212(6), 1306-1312.

L-Lactic acid fermentation by Enterococcus faecium: a new isolate from bovine rumen.

Sun, W., Liu, J., Xu, H., Li, W. & Zhang, J. (2015). Biotechnology Letters, 37(7), 1379-1383.

Pork meat products functional value and safety parameters improving by using lactic acid fermentation of savory plants.

Bartkiene, E., Mozuriene, E., Juodeikiene, G., Zadeike, D., Maruska, A., Stankevicius, M., Ragazinskiene, O. & Cizeikiene, D. (2015). Journal of Food Science and Technology, 52(11), 7143-7152.

Distillery wastes to lactic acid: Bio refinery approach.

Đukić-Vuković, A., Mojović, L., Pejin, J. & Kocić-Tanackov, S. (2015). Journal on Processing and Energy in Agriculture, 19(1), 34-37.

Non-traditional sources for isolation of lactic acid bacteria.

Teneva-Angelova, T. & Beshkova, D. (2016). Annals of Microbiology, 66(1), 449-459.

Formation of volatile compounds in kefir made of goat and sheep milk with high polyunsaturated fatty acid content.

Cais-Sokolińska, D., Wójtowski, J., Pikul, J., Danków, R., Majcher, M., Teichert, J., & Bagnicka, E. (2015). Journal of Dairy Science, 98(10), 6692-6705.

Treatment of grain with organic acids at 2 different dietary phosphorus levels modulates ruminal microbial community structure and fermentation patterns in vitro.

Harder, H., Khol-Parisini, A., Metzler-Zebeli, B. U., Klevenhusen, F. & Zebeli, Q. (2015). Journal of dairy science, 98(11), 8107-8120.

Enterococcus bulliens sp. nov., a novel lactic acid bacterium isolated from camel milk.

Kadri, Z., Spitaels, F., Cnockaert, M., Praet, J., El Farricha, O., Swings, J. & Vandamme, P. (2015). Antonie van Leeuwenhoek, 108(5), 1257-1265.

Faecalibacterium prausnitzii subspecies-level dysbiosis in the human gut microbiome underlying atopic dermatitis.

Song, H., Yoo, Y., Hwang, J., Na, Y. C. & Kim, H. S. (2016). Journal of Allergy and Clinical Immunology, 137(3), 852-860.

Engineering wild-type robust Pediococcus acidilactici strain for high titer L-and D-lactic acid production from corn stover feedstock.

Yi, X., Zhang, P., Sun, J., Tu, Y., Gao, Q., Zhang, J., & Bao, J. (2016). Journal of Biotechnology, 217, 112-121.

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.