1,3(4)-β-D-Galactobiose 

CAS: 2152-98-9
Molecular Formula: C12H22O11
Molecular Weight: 342.3
Purity: > 95%

High purity Galactobiose for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

Product Code
Content/size
Stock
Price
Qty
O-GBI
50 mg
$198.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

α-D-galactosidase activity and galactomannan and galactosylsucrose oligosaccharide depletion in germinating legume seeds.

McCleary, B. V. & Matheson, N. K. (1974). Phytochemistry, 13(9), 1747-1757.

Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research.

Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., Ralet, M. C., Farkas, V., Von Schantz, L., Marcus, S. E., Andersen, M.C. F., Field, R., Ohlin, M., Knox, J. P., Clausen, M. H. & Willats, W. G. T. (2012). Journal of Biological Chemistry, 287(47), 39429-39438.

Cello-oligosaccharides released from host plants induce pathogenicity in scab-causing Streptomyces species.

Johnson, E. G., Joshi, M. V., Gibson, D. M. & Loria, R. (2007). Physiological and Molecular Plant Pathology, 71(1), 18-25.

Galectin 3–β-galactobiose interactions.

Gunning, A. P., Pin, C. & Morris, V. J. (2013). Carbohydrate Polymers, 92(1), 529-533.

Purification and characterization of Aspergillus β-D-galactanases acting on β-1,4- and β-1,3/6-linked arabinogalactans.

Luonteri, E., Laine, C., Uusitalo, S., Teleman, A., Siika-aho, M. & Tenkanen, M. (2003). Carbohydrate Polymers, 53(2), 155-168.

A galactosyltransferase acting on arabinogalactan protein glycans is essential for embryo development in Arabidopsis.

Geshi, N., Johansen, J. N., Dilokpimol, A., Rolland, A., Belcram, K., Verger, S., Kotake, T., Tsumuraya, Y., Kaneko, S., Tryfona, T., Dupree, P., Scheller, H. V., Hofte, H. & Mouille, G. (2013). The Plant Journal, 76(1), 128-137.

Occurrence of cellobiose residues directly linked to galacturonic acid in pectic polysaccharides.

Nunes, C., Silva, L., Fernandes, A. P., Guiné, R. P. F., Domingues, M. R. M. & Coimbra, M. A. (2012). Carbohydrate Polymers, 87(1), 620-626.

Identification of elongating β-1,4-galactosyltransferase activity in mung bean (Vigna radiata) hypocotyls using 2-aminobenzaminated 1,4-linked β-D-galactooligosaccharides as acceptor substrates.

Ishii, T., Ohnishi-Kameyama, M. & Ono, H. (2004). Planta, 219(2), 310-318.

Distinct substrate specificities of three glycoside hydrolase family 42 β-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697.

Viborg, A. H., Katayama, T., Hachem, M. A., Andersen, M. C., Nishimoto, M., Clausen, M. H., Urashima, T., Svensson, B. & Kitaoka, M. (2014). Glycobiology, 24(2), 208-216.

Solubilization of galactosyltransferase that synthesizes 1,4‐β-galactan side chains in pectic rhamnogalacturonan I.

Geshi, N., Pauly, M. & Ulvskov, P. (2002). Physiologia Plantarum, 114(4), 540-548.

Induction of mannanase, xylanase, and endoglucanase activities in Sclerotium rolfsii.

Sachslehner, A., Nidetzky, B., Kulbe, K. D. & Haltrich, D. (1998). Applied and Environmental Microbiology, 64(2), 594-600.

Characterization of the Erwinia chrysanthemi gan locus, involved in galactan catabolism.

Delangle, A., Prouvost, A. F., Cogez, V., Bohin, J. P., Lacroix, J. M. & Cotte-Pattat, N. H. (2007). Journal of Bacteriology, 189(19), 7053-7061.

Purification and characterization of cellobiose dehydrogenase from the plant pathogen Sclerotium (Athelia) rolfsii.

Baminger, U., Subramaniam, S. S., Renganathan, V. & Haltrich, D. (2001). Applied and Environmental Microbiology, 67(4), 1766-1774.