Glucomannan (Konjac; Low Viscosity)

High purity Glucomannan (Konjac; Low Viscosity) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

Purity > 98%. Glucose: Mannose = 40: 60. Acetylated. Viscosity ~ 2 cSt.

Product Code
4 grams

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

Alkaline hydrogen peroxide pretreatment of softwood: Hemicellulose degradation pathways.

Alvarez-Vasco, C. & Zhang, X. (2013). Bioresource Technology, 150, 321-327.

A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases.

Park, Y. B. & Cosgrove, D. J. (2012). Plant Physiology, 158(4), 1933-1943.

Methodologies for the extraction and analysis of konjac glucomannan from corms of Amorphophallus konjac K. Koch.

Chua, M., Chan, K., Hocking, T. J., Williams, P. A., Perry, C. J. & Baldwin, T. C. (2012). Carbohydrate Polymers, 87(3), 2202-2210.

Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-β-mannosidase from Aspergillus niger BK01.

Bien-Cuong, D., Thi-Thu, D., Berrin, J. G., Haltrich, D., Kim-Anh, T., Sigoillot, J. C. & Yamabhai, M. (2009). Microbial Cell Factories, 8(1), 59.

Efficient recombinant expression and secretion of a thermostable GH26 mannan endo-1,4-β-mannosidase from Bacillus licheniformis in Escherichia coli.

Songsiriritthigul, C., Buranabanyat, B., Haltrich, D. & Yamabhai, M. (2010). Microbial Cell Factories, 9(1), 20.

Influence of a mannan binding family 32 carbohydrate binding module on the activity of the appended mannanase.

Mizutani, K., Fernandes, V. O., Karita, S., Luís, A. S., Sakka, M., Kimura, T., Jackson, A., Zhang, X., Fontes, C. M. G. A., Gilbert, H. J. & Sakka, K. (2012). Applied and Environmental Microbiology, 78(14), 4781-4787.

Structural and Thermodynamic Dissection of Specific Mannan Recognition by a Carbohydrate Binding Module, TmCBM27.

Boraston, A. B., Revett, T. J., Boraston, C. M., Nurizzo, D. & Davies, G. J. (2003). Structure, 11(6), 665-675.

Mannan transglycosylase: a novel enzyme activity in cell walls of higher plants.

Schröder, R., Wegrzyn, T. F., Bolitho, K. M. & Redgwell, R. J. (2004). Planta, 219(4), 590-600.

Xyloglucans of monocotyledons have diverse structures.

Hsieh, Y. S. & Harris, P. J. (2009). Molecular Plant, 2(5), 943-965.

Cellulose microfibril angles and cell-wall polymers in different wood types of Pinus radiata.

Brennan, M., McLean, J. P., Altaner, C. M., Ralph, J. & Harris, P. J. (2012). Cellulose, 19(4), 1385-1404.

Divalent toxoids loaded stable chitosan–glucomannan nanoassemblies for efficient systemic, mucosal and cellular immunostimulatory response following oral administration.

Harde, H., Siddhapura, K., Agrawal, A. K. & Jain, S. (2015). International Journal of Pharmaceutics, 487(1), 292-304.

Trp residue at subsite − 5 plays a critical role in the substrate binding of two protistan GH26 β-mannanases from a termite hindgut.

Hsu, Y., Koizumi, H., Otagiri, M., Moriya, S. & Arioka, M. (2018). Applied Microbiology and Biotechnology, 1-11.

Biochemical characterization of a thermostable endomannanase/endoglucanase from Dictyoglomus turgidum.

Fusco, F. A., Ronca, R., Fiorentino, G., Pedone, E., Contursi, P., Bartolucci, S. & Limauro, D. (2017). Extremophiles, 22(1), 131-140.

Stability and ligand promiscuity of type A carbohydrate-binding modules are illustrated by the structure of Spirochaeta thermophila StCBM64C.

Pires, V. M. R., Pereira, P. M. M., Brás, J. L. A., Correia, M., Cardoso, V., Bule, P., Alves, V. D., Najmudin, S., Venditto, I., Ferreira, L. M. A., Romão, M. J., Carvalho, A. L., Fontes, C. M. G. A. & Romão, M. J. (2017). Journal of Biological Chemistry, 292(12), 4847-4860.

Biochemical studies of two lytic polysaccharide monooxygenases from the white-rot fungus Heterobasidion irregulare and their roles in lignocellulose degradation.

Liu, B., Olson, Å., Wu, M., Broberg, A. & Sandgren, M. (2017). PloS One, 12(12), e0189479.

Purification, characterization, and overexpression of an endo-1,4-β-mannanase from thermotolerant Bacillus sp. SWU60.

Seesom, W., Thongket, P., Yamamoto, T., Takenaka, S., Sakamoto, T. & Sukhumsirichart, W. (2017). World Journal of Microbiology and Biotechnology, 33(3), 53.

Functional characterization of a thermostable endoglucanase belonging to glycoside hydrolase family 45 from Fomitopsis palustris.

Cha, J. H., Yoon, J. J. & Cha, C. J. (2018). Applied Microbiology and Biotechnology, 102(15), 6515-6523.

Host-linked soil viral ecology along a permafrost thaw gradient.

Emerson, J. B., Roux, S., Brum, J. R., Bolduc, B., Woodcroft, B. J., Jang, H. B., et al. (2018). Nature Microbiology, 3, 870-880.