Glucose Oxidase Assay Kit

The Glucose Oxidase assay kit is a simple procedure for the rapid and reliable measurement and analysis of glucose oxidase activity in industrial enzyme preparations and bread improver mixtures.

Glucose Oxidase assay kit is suitable for manual, auto-analyser and microplate formats.

Product Code
200 assays (manual) / 2000 assays (microplate)
/ 1960 assays (auto-analyser)

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

Colourimetric method for the determination of Glucose Oxidase
in foodstuffs and fermentation products

                              (glucose oxidase)
(1) β-D-Glucose + H2O + O2 → D-glucono-δ-lactone + H2O2

(2) 2H2O2 + p-hydroxybenzoic acid + 4-aminoantipyrine →
                                                                    quinoneimine + 4H2O

Kit size:                             200 assays (manual) / 2000 (microplate)
                                           / 1960 (auto-analyser)
Method:                            Spectrophotometric at 510 nm
Reaction time:                  ~ 20 min
Detection limit:                 10 U/L
Application examples:
Enzyme preparations, and other materials (e.g. biological cultures,
samples, etc.)
Method recognition:     Novel method


  • Very competitive price (cost per test)
  • All reagents stable for > 12 months after preparation
  • Simple format
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing
  • Standard included
  • Suitable for manual, microplate and auto-analyser formats

Starch digestibility and predicted glycemic index of fried sweet potato cultivars.

Odenigbo, A., Rahimi, J., Ngadi, M., Amer, S. & Mustafa, A. (2012). Functional Foods in Health and Disease, 2(7), 280-289.

Synthesis and characterization of enzyme–magnetic nanoparticle complexes: effect of size on activity and recovery.

Park, H. J., McConnell, J. T., Boddohi, S., Kipper, M. J. & Johnson, P. A. (2011). Colloids and Surfaces B: Biointerfaces, 83(2), 198-203.

Development of antimicrobial packaging materials with immobilized glucose oxidase and lysozyme.

Hanušová, K., Vápenka, L., Dobiáš, J. & Mišková, L. (2013). Central European Journal of Chemistry, 11(7), 1066-1078.

Quantification of starch in plant tissues.

Smith, A. M. & Zeeman, S. C. (2006). Nature Protocols, 1(3), 1342-1345.

Free nonimmobilized ligands as a tool for purification of proteins.

Patchornik, G. & Albeck, A. (2005). Bioconjugate Chemistry, 16(5), 1310-1315.

On the relationship between jetted inks and printed biopatterns: Molecular-thin functional microarrays of glucose oxidase.

Arrabito, G., Musumeci, C., Aiello, V., Libertino, S., Compagnini, G. & Pignataro, B. (2009). Langmuir, 25(11), 6312-6318.

Starch fraction profiles of milled, nonparboiled rice varieties from Nigeria.

Odenigbo, A. M., Ngadi, M., Manful, J. & Danbaba, N. (2013). International Journal of Food Science & Technology, 48(12), 2535-2540.

A Combined Electrochemical‐Microfluidic Strategy for the Microscale‐Sized Selective Modification of Transparent Conductive Oxides.

Lamberti, F., Salmaso, S., Zambon, A., Brigo, L., Malfanti, A., Gatti, T., Agnoli, S., Granozzi, G., Brusatin, G., Elvassore, N. & Giomo, M. (2017). Advanced Materials Interfaces, In Press.

Chemical composition, digestibility and emulsification properties of octenyl succinic esters of various starches.

Simsek, S., Ovando-Martinez, M., Marefati, A., Sjӧӧ, M. & Rayner, M. (2015). Food Research International, 75, 41-49.

The resistant starch content of some cassava based Nigerian foods.

Ogbo, F. C. & Okafor, E. N. (2015). Nigerian Food Journal, 33(1), 29-34.

Relationships among genetic, structural, and functional properties of rice starch.

Kong, X., Chen, Y., Zhu, P., Sui, Z., Corke, H. & Bao, J. (2015). Journal of Agricultural and Food Chemistry, 63(27), 6241-6248.

In vitro amylolysis of pulse and hylon VII starches explained in terms of their composition, morphology, granule architecture and interaction between hydrolysed starch chains.

Maaran, S., Hoover, R., Vamadevan, V., Waduge, R. N. & Liu, Q. (2016). Food Chemistry, 192, 1098-1108.

Chemical composition, nutritional value and in vitro starch digestibility of roasted chickpeas.

Simsek, S., Herken, E. N. & Ovando‐Martinez, M. (2015). Journal of the Science of Food and Agriculture, 96(8), 2896-2905.

Ethanol from a biorefinery waste stream: Saccharification of amylase, protease and xylanase treated wheat bran.

Wood, I. P., Cook, N. M., Wilson, D. R., Ryden, P., Robertson, J. A. & Waldron, K. W. (2016). Food Chemistry, 198, 125-131.

Production, purification and characterization of an ionic liquid tolerant cellulase from Bacillus sp. isolated from rice paddy field soil.

Sriariyanun, M., Tantayotai, P., Yasurin, P., Pornwongthong, P. & Cheenkachorn, K. (2016). Electronic Journal of Biotechnology, 19, 23-28.

Multi-scale structural changes of wheat and yam starches during cooking and their effect on in vitro enzymatic digestibility.

Wang, S., Wang, S., Guo, P., Liu, L. & Wang, S. (2016). Journal of Agricultural and Food Chemistry, 65(1), 156-166.

In vitro digestibility, protein composition and techno-functional properties of Saskatchewan grown yellow field peas (Pisum sativum L.) as affected by processing.

Ma, Z., Boye, J. I. & Hu, X. (2016). Food Research International, 92, 64-78.

Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae.

Yin, H., Bultema, J. B., Dijkhuizen, L. & van Leeuwen, S. S. (2017). Food Chemistry, 225, 230-238.

Lignin enrichment and enzyme deactivation as the root cause of enzymatic hydrolysis slowdown of steam pretreated sugarcane bagasse.

Wallace, J., Brienzo, M., García-Aparicio, M. P. & Görgens, J. F. (2016). New Biotechnology, 33(3), 361-371.

Predicting the ethanol potential of wheat straw using near-infrared spectroscopy and chemometrics: The challenge of inherently intercorrelated response functions.

Rinnan, Å., Bruun, S., Lindedam, J., Decker, S. R., Turner, G. B., Felby, C. & Engelsen, S. B. (2017). Analytica Chimica Acta, 962, 15-23.

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.