Isoamylase (Glycogen 6-glucanohydrolase) 

Pure Isoamylase (Glycogen 6-glucanohydrolase) for use in biochemical enzyme assays and in vitro diagnostic analysis. Isoamylase, Fructanase (E-FRMXPD) and Amyloglucosidase (E-AMGDF) are used in the enzyme hydrolysis step of two validated methods for the determination of polydextrose (a low molar mass dietary fiber) in foods: AOAC method 2000.11 and Chinese GB Standard 5009.245-2016.

Please refer to E-ISAMYHP for high purity enzyme suitable for use in starch structural research.

EC 3.2.1.68 
CAZy Family: GH13
CAS: 9067-73-6 

isoamylase; glycogen 6-alpha-D-glucanohydrolase

Highly purified. From Pseudomonas sp. Electrophoretically homogeneous.
In 3.2 M ammonium sulphate.
Supplied at ~ 200 U/mL.

Specific activity: 
~ 180 U/mg (40oC, pH 4.0 on oyster glycogen) (equivalent to 16 MU Sigma Units/mg).

Stability: > 4 years at 4oC.

Product Code
Content/size
Stock
Price
Qty
E-ISAMY
600 Units
$255.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

Validation of Methods
Certification

5009.245-2016

Certification

AOAC Method 2000.11

DESCRIPTION

Isoamylase (Glycogen 6-glucanohydrolase)

EC 3.2.1.68 
CAZy Family: GH13
CAS: 9067-73-6 

Synonyms:
isoamylase; glycogen 6-alpha-D-glucanohydrolase

Form:
In 3.2 M ammonium sulphate.

Stability: 
> 4 years at 4oC.

Specific activity:
~ 180 U/mg (40oC, pH 4.0 on oyster glycogen) (equivalent to 16 MU Sigma Units/mg).

Unit definition:
One unit of isoamylase activity is the amount of enzyme required to release one μmole of D-glucose reducing sugar equivalent in the presence of oyster glycogen per min at pH 4.0 and 40oC.

Specificity:
Hydrolysis of (1,6)-α-D-glucosidic branch linkages in glycogen, amylopectin and their β-limit dextrins.

Applications:
Applications in carbohydrate research and in the food and feeds, and cereals industry.

Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination.

Xia, H., Yandeau-Nelson, M., Thompson, D. B. & Guiltinan, M. J. (2011). BMC Plant Biology, 11(1), 95-107.

Effect of a gibberellin-biosynthesis inhibitor treatment on the physicochemical properties of sorghum starch.

Li, E., Hasjim, J., Dhital, S., Godwin, I. D. & Gilbert, R. G. (2011). Journal of Cereal Science, 53(3), 328-334.

Characterization of starch granules in rice culms for application of rice straw as a feedstock for saccharification.

Matsuki, J., Park, J. Y., Shiroma, R., Arai-Sanoh, Y., Ida, M., Kondo, M., Motobayashi, K. & Tokuyasu, K. (2010). Bioscience, Biotechnology, and Biochemistry, 74(8), 1645-1651.

Physico-chemical properties of potato starches.

Alvani, K., Qi, X., Tester, R. F. & Snape, C. E. (2011). Food Chemistry, 125(3), 958-965.

Determination of polydextrose as dietary fiber in foods.

Craig, S. A. S., Holden, J. F. & Khaled, M. Y. (2000). Journal of AOAC International, 83(4), 1006-1012.

Amylolysis of wheat starches. II. Degradation patterns of native starch granules with varying functional properties.

Blazek, J. & Copeland, L. (2010). Journal of Cereal Science, 52(2), 295-302.

Differences in structures of starch hydrolysates using saliva from different individuals.

Nantanga, K. K. M., Chan, E., Suleman, S., Bertoft, E. & Seetharaman, K. (2013). Starch‐Stärke, 65(7‐8), 709-713.

Determination of polydextrose in foods by ion chromatography: collaborative study.

Craig, S. A. S., Holden, J. F. & Khaled, M. Y. (2001). Journal of AOAC International, 84(2), 472-478.

Structure and function of starch and resistant starch from corn with different doses of mutant amylose-extender and floury-1 alleles.

Yao, N., Paez, A. V. & White, P. J. (2009). Journal of Agricultural and Food Chemistry, 57(5), 2040-2048.

Molecular structure and granule morphology of native and heat‐moisture‐treated pinhão starch.

Pinto, V. Z., Moomand, K., Vanier, N. L., Colussi, R., Villanova, F. A., Zavareze, E. R., Lim, L. T. & Dias, A. R. G. (2015). International Journal of Food Science & Technology, 50(2), 282-289.

An exceptionally cold-adapted alpha-amylase from a metagenomic library of a cold and alkaline environment.

Vester, J. K., Glaring, M. A. & Stougaard, P. (2015). Applied Microbiology and Biotechnology, 99(2), 717-727.

Crystallization and chain reorganization of debranched rice starches in relation to resistant starch formation.

Kiatponglarp, W., Tongta, S., Rolland-Sabaté, A. & Buléon, A. (2015). Carbohydrate Polymers, 122, 108-114.

Amylose and amylopectin branch chain reactivity in a model derivatization system.

Hong, J. S. & Huber, K. C. (2015). Carbohydrate Polymers, 122, 437-445.

Preparation of cross-linked maize (Zea mays L.) starch in different reaction media.

Hong, J. S., Gomand, S. V., & Delcour, J. A. (2015). Carbohydrate Polymers, 124, 302-310.

Structural characteristics of slowly digestible starch and resistant starch isolated from heat-moisture treated waxy potato starch.

Lee, C. J. & Moon, T. W. (2015). Carbohydrate Polymers, 125, 200-205.

Synergistic amylomaltase and branching enzyme catalysis to suppress cassava starch digestibility.

Sorndech, W., Meier, S., Jansson, A. M., Sagnelli, D., Hindsgaul, O., Tongta, S. & Blennow, A. (2015). Carbohydrate Polymers, 132, 409-418.

Relationships among genetic, structural, and functional properties of rice starch.

Kong, X., Chen, Y., Zhu, P., Sui, Z., Corke, H. & Bao, J. (2015). Journal of Agricultural and Food Chemistry, 63(27), 6241-6248.

Effect of heat-moisture treatment on the structural, physicochemical, and rheological characteristics of arrowroot starch.

Pepe, L. S., Moraes, J., Albano, K. M., Telis, V. R. & Franco, C. M. (2016). Food Science and Technology International, 22(3), 256-265.

Molecular and thermal characterization of starches isolated from African rice (Oryza glaberrima).

Gayin, J., Bertoft, E., Manful, J., Yada, R. Y. & Abdel‐Aal, E. S. M. (2016). Starch‐Stärke, 68(1-2), 9-19.

Lubrication of starch in ionic liquid-water mixtures: Soluble carbohydrate polymers form a boundary film on hydrophobic surfaces.

Yakubov, G. E., Zhong, L., Li, M., Boehm, M. W., Xie, F., Beattie, D. A., Halley, P. J. & Stokes, J. R. (2015). Carbohydrate Polymers, 133, 507-516.

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.

FAQs