L-Lactic Acid (L-Lactate) Assay Kit

The L-Lactic Acid (L-Lactate) Assay Kit is used for the specific measurement and analysis of L-lactic acid (L-lactate) in beverages, meat, dairy and food products.

Extended cofactors stability. Dissolved cofactors stable for > 1 year at 4oC.

Suitable for manual, auto-analyser and microplate formats.

Image unavailable
Product Code
50 assays (manual) / 500 assays (microplate)
/ 450 assays (auto-analyser)

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

UV-method for the determination of L-Lactic Acid in foodstuffs,
beverages and other materials

                     (L-lactate dehydrogenase)
(1) L-Lactic acid + NAD+ ↔ pyruvate + NADH + H+

                   (glutamate-pyruvate transaminase)
(2) Pyruvate + D-glutamate → D-alanine + 2-oxoglutarate

Kit size:    50 assays (manual) / 450 (microplate)
                                           / 500 (auto-analyser)

The number of manual tests per kit can be doubled if all volumes are halved. 
This can be readily accommodated using the MegaQuantTM 
Spectrophotometer (D-MQWAVE).

Method:                            Spectrophotometric at 340 nm
Reaction time:                  ~ 10 min
Detection limit:                 0.21 mg/L
Application examples:
Wine, beer, soft drinks, milk, dairy products (e.g. cream, milk / whey
powder, cheese, condensed milk and yogurt), foods containing milk 
(e.g. dietetic foods, bakery products, baby food, chocolate, sweets
and ice-cream), egg, egg products (e.g. egg powder), baking additives,
vinegar, fruit and vegetables, processed fruit and vegetables
(e.g. tomatoes), meat products, food additives, feed, paper (and
cardboard), cosmetics, pharmaceuticals and other materials (e.g. biological
cultures, samples, etc.)
Method recognition:    
Methods based on this principle have been accepted by DIN, GOST,


  • Very competitive price (cost per test)
  • All reagents stable for > 2 years after preparation
  • Rapid reaction
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing
  • Standard included
  • Extended cofactors stability
  • Suitable for manual, microplate and auto-analyser formats

Grape and wine analysis: Oenologists to exploit advanced test kits.

Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.

Megazyme “advanced” wine test kits general characteristics and validation.

Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.

Production of L-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli.

Nguyen, C. M., Kim, J. S., Hwang, H. J., Park, M. S., Choi, G. J., Choi, Y. H., Jang, K. S. & Kim, J. C. (2012). Bioresource Technology, 110, 552-559.

A novel lactic acid bacterium for the production of high purity L-lactic acid, Lactobacillus paracasei subsp. paracasei CHB2121.

Moon, S. K., Wee, Y. J. & Choi, G. W. (2012). Journal of Bioscience and Bioengineering, 114(2), 155-159.

Histone acetylation regulates intracellular pH.

McBrian, M. A., Behbahan, I. S., Ferrari, R., Su, T., Huang, T. W., Li, K., Hong, C. S., Christofk, H. R., Vogelauer, M., Seligson, D. B. & Kurdistani, S. K. (2013). Molecular Cell, 49(2), 310-321.

Relationship between Fish Size and Metabolic Rate in the Oxyconforming Inanga Galaxias maculatus Reveals Size-Dependent Strategies to Withstand Hypoxia.

Urbina, M. A. & Glover, C. N. (2013). Physiological and Biochemical Zoology, 86(6), 740-749.

Exposure to elevated temperature and pCO2 reduces respiration rate and energy status in the periwinkle Littorina littorea.

Melatunan, S., Calosi, P., Rundle, S. D., Moody, A. J. & Widdicombe, S. (2011). Physiological and Biochemical Zoology, 84(6), 583-594.

Construction of a food-grade cell surface display system for Lactobacillus casei.

Qin, J., Wang, X., Kong, J., Ma, C. & Xu, P. (2014). Microbiological Research, 169(9-10), 733-740.

Identification of spoilage marker metabolites in Irish chicken breast muscle using HPLC, GC–MS coupled with SPME and traditional chemical techniques.

Alexandrakis, D., Brunton, N. P., Downey, G. & Scannell, A. G. (2012). Food and Bioprocess Technology, 5(5), 1917-1923.

Improvement of lactic acid production in Saccharomyces cerevisiae by cell sorting for high intracellular pH.

Valli, M., Sauer, M., Branduardi, P., Borth, N., Porro, D. & Mattanovich, D. (2006). Applied and Environmental Microbiology, 72(8), 5492-5499.

Sourdough-leavened bread improves postprandial glucose and insulin plasma levels in subjects with impaired glucose tolerance.

Maioli, M., Pes, G. M., Sanna, M., Cherchi, S., Dettori, M., Manca, E. & Farris, G. A. (2008). Acta Diabetologica, 45(2), 91-96.

Homo-fermentative production of D-lactic acid by Lactobacillus sp. employing casein whey permeate as a raw feed-stock.

Prasad, S., Srikanth, K., Limaye, A. M. & Sivaprakasam, S. (2014). Biotechnology Letters, 36(6), 1303-1307.

Assessment of the influence of biochar on rumen and silage fermentation: A laboratory-scale experiment.

Calvelo Pereira, R., Muetzel, S., Arbestain, M. C., Bishop, P., Hina, K. & Hedley, M. (2014). Animal Feed Science and Technology, 196, 22-31.

Behavioural, physiological and biochemical responses to aquatic hypoxia in the freshwater crayfish, Paranephrops zealandicus.

Broughton, R. J., Marsden, I. D., Hill, J. V. & Glover, C. N. (2017). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 212, 72-80.

Quantitative proteomics analysis of an ethanol- and a lactate-producing mutant strain of Synechocystis sp. PCC6803.

Borirak, O., Koning, L. J., Woude, A. D., Hoefsloot, H. C., Dekker, H. L., Roseboom, W., deKoster, C. G. & Hellingwerf, K. J. (2015). Biotechnology for Biofuels, 8(1), 111.

Microbiological Analyses of Traditional Alcoholic Beverage (Chhang) and its Starter (Balma) Prepared by Bhotiya Tribe of Uttarakhand, India.

Bhardwaj, K. N., Jain, K. K., Kumar, S. & Kuhad, R. C. (2016). Indian Journal of Microbiology, 56(1), 28-34.

Thermal inactivation kinetics of surface contaminating Listeria monocytogenes on vacuum-packaged agar surface and ready-to-eat sliced ham and sausage.

Wang, X., Uyttendaele, M., Geeraerd, A., Steen, L., Fraeye, I. & Devlieghere, F. (2016). Food Research International, 89, 843-849.

The antioxidant uncoupling protein 2 stimulates hnRNPA2/B1, GLUT1 and PKM2 expression and sensitizes pancreas cancer cells to glycolysis inhibition.

Brandi, J., Cecconi, D., Cordani, M., Torrens-Mas, M., Pacchiana, R., Dalla Pozza, E., Butera, G., Manfredi, E., Marengo, E., Oliver, J., Roca, P., Dando, I., Donadelli, M. & Roca, P. (2016). Free Radical Biology and Medicine, 101, 305-316.

Reagent-Less and Robust Biosensor for Direct Determination of Lactate in Food Samples.

Bravo, I., Revenga-Parra, M., Pariente, F. & Lorenzo, E. (2017). Sensors, 17(1), 144.

Monascus ruber as cell factory for lactic acid production at low pH.

Weusthuis, R. A., Mars, A. E., Springer, J., Wolbert, E. J., van der Wal, H., de Vrije, T. G., Levisson, M., Leprince, A., Houweling-Tan, G. B., Moers, P. H. A., Hendriks, N. A., Mendes, O., Griekspoor, Y., Werten, M. W. T., Schaap, P. J. der Oost, J., Eggink, G. & Hendriks, S. N. (2017). Metabolic Engineering, 42, 66-73.

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.