Image unavailable

L-Lactic Acid (L-Lactate) Assay Kit

The L-Lactic Acid (L-Lactate) Assay Kit is used for the specific measurement and analysis of L-lactic acid (L-lactate) in beverages, meat, dairy and food products.

Extended cofactors stability. Dissolved cofactors stable for > 1 year at 4oC.

Suitable for manual, auto-analyser and microplate formats.

Content/Size SKU Price Qty In Stock
50 assays (manual) / 500 assays (microplate)
/ 450 assays (auto-analyser)
K-LATE
$147.00
Available
Add to Cart

Advantages

  • Very competitive price (cost per test)
     
  • All reagents stable for > 2 years after preparation
     
  • Rapid reaction
     
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing
     
  • Standard included
     
  • Extended cofactors stability
     
  • Suitable for manual, microplate and auto-analyser formats

UV-method for the determination of L-Lactic Acid in foodstuffs,
beverages and other materials

Principle:
                     (L-lactate dehydrogenase)
(1) L-Lactic acid + NAD+ ↔ pyruvate + NADH + H+

                   (glutamate-pyruvate transaminase)
(2) Pyruvate + D-glutamate → D-alanine + 2-oxoglutarate

Kit size:                            50 assays (manual) / 450 (microplate)
                                          / 500 (auto-analyser)
Method:                            Spectrophotometric at 340 nm
Reaction time:                  ~ 10 min
Detection limit:                 0.21 mg/L
Application examples:
Wine, beer, soft drinks, milk, dairy products (e.g. cream, milk / whey
powder, cheese, condensed milk and yogurt), foods containing milk 
(e.g. dietetic foods, bakery products, baby food, chocolate, sweets
and ice-cream), egg, egg products (e.g. egg powder), baking additives,
vinegar, fruit and vegetables, processed fruit and vegetables
(e.g. tomatoes), meat products, food additives, feed, paper (and
cardboard), cosmetics, pharmaceuticals and other materials (e.g. biological
cultures, samples, etc.)
Method recognition:    
Methods based on this principle have been accepted by DIN, GOST,
IDF, EEC, EN, ISO, OIV, IFU, AIJN and MEBAK

Grape and wine analysis: Oenologists to exploit advanced test kits.

Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.
Read Abstract
It is without doubt that testing plays a pivotal role throughout the whole of the vinification process. To produce the best possible quality wine and to minimise process problems such as “stuck” fermentation or troublesome infections, it is now recognised that if possible testing should begin prior to harvesting of the grapes and continue through to bottling. Traditional methods of wine analysis are often expensive, time consuming, require either elaborate equipment or specialist expertise and frequently lack accuracy. However, enzymatic bio-analysis enables the accurate measurement of the vast majority of analytes of interest to the wine maker, using just one piece of apparatus, the spectrophotometer (see previous issue No. 116 for a detailed technical review). Grape juice and wine are amenable to enzymatic testing as being liquids they are homogenous, easy to manipulate, and can generally be analysed without any sample preparation.

Megazyme “advanced” wine test kits general characteristics and validation.

Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.
Read Abstract
Many of the enzymatic test kits are official methods of prestigious organisations such as the Association of Official Analytical Chemicals (AOAC) and the American Association of Cereal Chemists (AACC) in response to the interest from oenologists. Megazyme decided to use its long history of enzymatic bio-analysis to make a significant contribution to the wine industry, by the development of a range of advanced enzymatic test kits. This task has now been successfully completed through the strategic and comprehensive process of identifying limitations of existing enzymatic bio-analysis test kits where they occurred, and then using advanced techniques, such as molecular biology (photo 1), to rapidly overcome them. Novel test kits have also been developed for analytes of emerging interest to the oenologist, such as yeast available nitrogen (YAN; see pages 2-3 of issue 117 article), or where previously enzymes were simply either not available, or were too expensive to employ, such as for D-mannitol analysis.

Production of L-lactic acid from a green microalga, Hydrodictyon reticulum, by Lactobacillus paracasei LA104 isolated from the traditional Korean food, makgeolli.

Nguyen, C. M., Kim, J. S., Hwang, H. J., Park, M. S., Choi, G. J., Choi, Y. H., Jang, K. S. & Kim, J. C. (2012). Bioresource Technology, 110, 552-559.
Read Abstract
The freshwater microalga, Hydrodictyon reticulum, that contained 47.5% reducing sugars including 35% glucose was used as substrate for the production of L-lactic acid (LA) by LA-producing bacteria. Lactobacillus paracasei LA104 was selected for fermentation in a 5-l fermentor since it was able to grow at pH 3, 60 g LA/l, 200 g glucose/l, 125 g NaCl/l, and 45°C and produced over 97.3% optically pure L-lactic acid with glucose as a substrate. Simultaneous saccharification and cofermentation from H. reticulum to L-LA using LA104 was investigated in a jar fermentor. The yield reached 46 g/100 g H. reticulum dry material, with a final concentration of 37.11 g/l and a productivity of 1.03 g/l/h. This is the first report of the production of L-LA from a microalga, and H. reticulum could be a potential feedstock for large-scale production of L-LA by LA104.

A novel lactic acid bacterium for the production of high purity L-lactic acid, Lactobacillus paracasei subsp. paracasei CHB2121.

Moon, S. K., Wee, Y. J. & Choi, G. W. (2012). Journal of Bioscience and Bioengineering, 114(2), 155-159.
Read Abstract
Fermentation-derived lactic acid has several potential industrial uses as an intermediate carbon chemical and a raw material for biodegradable polymer. We therefore undertook the identification of a novel bacterial strain that is capable of producing high concentrations of lactic acid and has potential commercial applications. A novel L(+)-lactic acid producing bacterium, Lactobacillus paracasei subsp. paracasei CHB2121 was isolated from soil obtained near an ethanol production factory and identified by 16S rRNA gene sequence analysis and characterization using an API 50 CHL kit. L. paracasei subsp. paracasei CHB2121 efficiently produced 192 g/L lactic acid from medium containing 200 g/L of glucose, with 3.99 g/(L•h) productivity, and 0.96 g/g yield. In addition, the optical purity of the produced lactic acid was estimated to be 96.6% L(+)-lactic acid. The newly identified L. paracasei subsp. paracasei CHB2121 efficiently produces high concentrations of lactic acid, and may be suitable for use in the industrial production of lactic acid.

Histone acetylation regulates intracellular pH.

McBrian, M. A., Behbahan, I. S., Ferrari, R., Su, T., Huang, T. W., Li, K., Hong, C. S., Christofk, H. R., Vogelauer, M., Seligson, D. B. & Kurdistani, S. K. (2013). Molecular Cell, 49(2), 310-321.
Read Abstract
Differences in global levels of histone acetylation occur in normal and cancer cells, although the reason why cells regulate these levels has been unclear. Here we demonstrate a role for histone acetylation in regulating intracellular pH (pHi). As pHi decreases, histones are globally deacetylated by histone deacetylases (HDACs), and the released acetate anions are coexported with protons out of the cell by monocarboxylate transporters (MCTs), preventing further reductions in pHi. Conversely, global histone acetylation increases as pHi rises, such as when resting cells are induced to proliferate. Inhibition of HDACs or MCTs decreases acetate export and lowers pHi, particularly compromising pHi maintenance in acidic environments. Global deacetylation at low pH is reflected at a genomic level by decreased abundance and extensive redistribution of acetylation throughout the genome. Thus, acetylation of chromatin functions as a rheostat to regulate pHi with important implications for mechanism of action and therapeutic use of HDAC inhibitors.

Relationship between Fish Size and Metabolic Rate in the Oxyconforming Inanga Galaxias maculatus Reveals Size-Dependent Strategies to Withstand Hypoxia.

Urbina, M. A. & Glover, C. N. (2013). Physiological and Biochemical Zoology, 86(6), 740-749.
Read Abstract
The relationship between metabolic rate and body size in animals is unlikely to be a constant but is instead shaped by a variety of intrinsic (i.e., physiological) and extrinsic (i.e., environmental) factors. This study examined the effect of environmental oxygen tension on oxygen consumption as a function of body mass in the galaxiid fish, inanga (Galaxias maculatus). As an oxyconformer, this fish lacks overt intrinsic regulation of oxygen consumption, eliminating this as a factor affecting the scaling relationship at different oxygen tensions. The relationship between oxygen consumption rate and body size was best described by a power function, with an exponent of 0.82, higher than the theoretical values of 0.66 or 0.75. The value of this exponent was significantly altered by environmental Po2, first increasing as Po2 decreased and then declining at the lowest Po2 tested. These data suggest that the scaling exponent is species specific and regulated by extrinsic factors. Furthermore, the external Po2 at which fish lost equilibrium was related to fish size, an effect explained by the scaling of anaerobic capacity with fish mass. Therefore, although bigger fish were forced to depress aerobic metabolism more rapidly than small fish when exposed to progressive hypoxia, they were better able to enact anaerobic metabolism, potentially extending their survival in hypoxia.

Exposure to elevated temperature and pCO2 reduces respiration rate and energy status in the periwinkle Littorina littorea.

Melatunan, S., Calosi, P., Rundle, S. D., Moody, A. J. & Widdicombe, S. (2011). Physiological and Biochemical Zoology, 84(6), 583-594.
Read Abstract
In the future, marine organisms will face the challenge of coping with multiple environmental changes associated with increased levels of atmospheric Pco2, such as ocean warming and acidification. To predict how organisms may or may not meet these challenges, an in-depth understanding of the physiological and biochemical mechanisms underpinning organismal responses to climate change is needed. Here, we investigate the effects of elevated Pco2 and temperature on the whole-organism and cellular physiology of the periwinkle Littorina littorea. Metabolic rates (measured as respiration rates), adenylate energy nucleotide concentrations and indexes, and end-product metabolite concentrations were measured. Compared with values for control conditions, snails decreased their respiration rate by 31% in response to elevated Pco2 and by 15% in response to a combination of increased Pco2 and temperature. Decreased respiration rates were associated with metabolic reduction and an increase in end-product metabolites in acidified treatments, indicating an increased reliance on anaerobic metabolism. There was also an interactive effect of elevated Pco2 and temperature on total adenylate nucleotides, which was apparently compensated for by the maintenance of adenylate energy charge via AMP deaminase activity. Our findings suggest that marine intertidal organisms are likely to exhibit complex physiological responses to future environmental drivers, with likely negative effects on growth, population dynamics, and, ultimately, ecosystem processes.

Construction of a food-grade cell surface display system for Lactobacillus casei.

Qin, J., Wang, X., Kong, J., Ma, C. & Xu, P. (2014). Microbiological Research, 169(9-10), 733-740.
Read Abstract
In this study, a food-grade cell surface display host/vector system for Lactobacillus casei was constructed. The food-grade host L. casei Q-5 was a lactose-deficient derivative of L. casei ATCC 334 obtained by plasmid elimination. The food-grade cell surface display vector was constructed based on safe DNA elements from lactic acid bacteria containing the following: pSH71 replicon from Lactococcus lactis, lactose metabolism genes from L. casei ATCC 334 as complementation markers, and surface layer protein gene from Lactobacillus acidophilus ATCC 4356 for cell surface display. The feasibility of the new host/vector system was verified by the expression of green fluorescent protein (GFP) on L. casei. Laser scanning confocal microscopy and immunofluorescence analysis using anti-GFP antibody confirmed that GFP was anchored on the surface of the recombinant cells. The stability of recombinant L. casei cells in artificial gastrointestinal conditions was verified, which is beneficial for oral vaccination applications. These results indicate that the food-grade host/vector system can be an excellent antigen delivery vehicle in oral vaccine construction.

Identification of spoilage marker metabolites in Irish chicken breast muscle using HPLC, GC–MS coupled with SPME and traditional chemical techniques.

Alexandrakis, D., Brunton, N. P., Downey, G. & Scannell, A. G. (2012). Food and Bioprocess Technology, 5(5), 1917-1923.
Read Abstract
The aim of this investigation was to determine the metabolites of spoilage present on the surface of Irish chicken breast muscle in order to identify biomarkers of microbial spoilage and to verify the results of a previous study which suggested that the increase of free amino acids is the main spectral influence factor leading to the near and middle infrared detection of microbial spoilage. Irish-reared chicken breast muscle samples were individually packed and stored at 4°C for 8 days under aerobic conditions. Microbiological analysis revealed that Pseudomonas spp. and Brochothrix thermosphacta were the predominant organisms (total viable counts (TVC), 4.24, 6.37 and 8.6 colony forming unity (CFU) g-1 for days 0, 4 and 8, respectively, Pseudomonas 3.2, 5.1 and finally, on day 8 7.4 log CFU g-1). Glucose and L-lactate concentrations decreased but the concentration of water-soluble polypeptides and amino acids increased over storage time. HPLC analysis of free amino acids revealed an increase of the total concentration but the composition of the profiles did not change over time. Headspace analysis detected the following volatile compounds: ethanol, acetone, ethyl acetate, methyl benzoate, heptane, C15, C12, methyl ethyl ketone, carbon disulphide, dimethyl sulphide, hexanal, and toluene. Of interest is the fact that detection of sulphides and an increase of ethanol, acetone, and ethyl acetate concentrations occurred from day 4 to 8. The increase in free amino acids throughout storage and the production of volatile compounds after day 4 require further investigation but are selected as potential biomarkers of microbial spoilage as they could be analytically detected before the accepted levels of sensory spoilage detection.

Improvement of lactic acid production in Saccharomyces cerevisiae by cell sorting for high intracellular pH.

Valli, M., Sauer, M., Branduardi, P., Borth, N., Porro, D. & Mattanovich, D. (2006). Applied and Environmental Microbiology, 72(8), 5492-5499.
Read Abstract
Yeast strains expressing heterologous L-lactate dehydrogenases can produce lactic acid. Although these microorganisms are tolerant of acidic environments, it is known that at low pH, lactic acid exerts a high level of stress on the cells. In the present study we analyzed intracellular pH (pHi) and viability by staining with cSNARF-4F and ethidium bromide, respectively, of two lactic-acid-producing strains of Saccharomyces cerevisiae, CEN.PK m850 and CEN.PK RWB876. The results showed that the strain producing more lactic acid, CEN.PK m850, has a higher pHi. During batch culture, we observed in both strains a reduction of the mean pHi and the appearance of a subpopulation of cells with low pHi. Simultaneous analysis of pHi and viability proved that the cells with low pHi were dead. Based on the observation that the better lactic-acid-producing strain had a higher pHi and that the cells with low pHi were dead, we hypothesized that we might find better lactic acid producers by screening for cells within the highest pHi range. The screening was performed on UV-mutagenized populations through three consecutive rounds of cell sorting in which only the viable cells within the highest pHi range were selected. The results showed that lactic acid production was significantly improved in the majority of the mutants obtained compared to the parental strains. The best lactic-acid-producing strain was identified within the screening of CEN.PK m850 mutants.

Sourdough-leavened bread improves postprandial glucose and insulin plasma levels in subjects with impaired glucose tolerance.

Maioli, M., Pes, G. M., Sanna, M., Cherchi, S., Dettori, M., Manca, E. & Farris, G. A. (2008). Acta Diabetologica, 45(2), 91-96.
Read Abstract
Sourdough bread has been reported to improve glucose metabolism in healthy subjects. In this study postprandial glycaemic and insulinaemic responses were evaluated in subjects with impaired glucose tolerance (IGT) who had a meal containing sourdough bread leavened with lactobacilli, in comparison to a reference meal containing bread leavened with baker yeast. Sixteen IGT subjects (age range 52–75, average BMI 29.9 ± 4.2 kg/m2) were randomly given a meal containing sourdough bread (A) and a meal containing the reference bread (B) in two separate occasions at the beginning of the study and after 7 days. Sourdough bread was leavened for 8 h using a starter containing autochthonous Saccharomyces cerevisiae and several bacilli able to produce a significant amount of D-and L-lactic acid, whereas the reference bread was leavened for 2 h with commercial baker yeast containing Saccharomyces cerevisiae. Plasma glucose and insulin levels were measured at time 0, 30, 60, 120, and 180 min. In IGT subjects sourdough bread induced a significantly lower plasma glucose response at 30 minutes (p = 0.048) and a smaller incremental area under curve (AUC) Δ 0–30 and Δ 0–60 min (p = 0.020 and 0.018 respectively) in comparison to the bread leavened with baker yeast. Plasma insulin response to this type of bread showed lower values at 30 min (p = 0.045) and a smaller AUC Δ 0–30 min (p = 0.018). This study shows that in subjects with IGT glycaemic and insulinaemic responses after the consumption of sourdough bread are lower than after the bread leavened with baker yeast. This effect is likely due to the lactic acid produced during dough leavening as well as the reduced availability of simple carbohydrates. Thus, sourdough bread may potentially be of benefit in subjects with impaired glucose metabolism.

Homo-fermentative production of D-lactic acid by Lactobacillus sp. employing casein whey permeate as a raw feed-stock.

Prasad, S., Srikanth, K., Limaye, A. M. & Sivaprakasam, S. (2014). Biotechnology Letters, 36(6), 1303-1307.
Read Abstract
Casein whey permeate (CWP), a lactose-enriched dairy waste effluent, is a viable feed stock for the production of value-added products. Two lactic acid bacteria were cultivated in a synthetic casein whey permeate medium with or without pH control. Lactobacillus lactis ATCC 4797 produced D-lactic acid (DLA) at 12.5 g l-1 in a bioreactor. The values of Leudking–Piret model parameters suggested that lactate was a growth-associated product. Batch fermentation was also performed employing CWP (35 g lactose l-1) with casein hydrolysate as a nitrogen supplement in a bioreactor. After 40 h, L. lactis produced 24.3 g lactic acid l-1 with an optical purity >98 %. Thus CWP may be regarded as a potential feed-stock for DLA production.

Assessment of the influence of biochar on rumen and silage fermentation: A laboratory-scale experiment.

Calvelo Pereira, R., Muetzel, S., Arbestain, M. C., Bishop, P., Hina, K. & Hedley, M. (2014). Animal Feed Science and Technology, 196, 22-31.
Read Abstract
The addition of biochar – charcoal produced from pyrolysis of carbonaceous materials – to soil presents several challenges, mainly associated with its low bulk density, dustiness and the risk of loss when applied to hill pastures. Livestock could be an adequate vehicle for biochar delivery to New Zealand pastoral soils via dung pats; however, the potential effects of biochar on rumen metabolism need to be investigated. The objective of this study was to investigate the effect of biochar addition to grass before ensiling on the fermentation process and to test whether the addition of grass silage prepared with biochar or biochar directly to hay affected the in vitro rumen fermentation. The study included the use of different types of starting material (corn stover and pine wood chips), two pyrolysis temperatures (350 and 550°C), post-treatment (addition of different types of bio-oil at a ratio of 0.050 mL/g), and different doses of biochar. The use of biochar from either corn stover or pine pyrolysed at 550°C as silage ingredients at doses from 21 to 186 g biochar/kg dry matter had no negative effect on the final properties of the silage, and particularly on pH, NH4+-N/total N, and acetic, N-butyric and L-lactic acid concentrations. The same silage mixtures with 84 and 186 g biochar/kg dry matter were in vitro incubated with buffered rumen fluid. There was a build-up in total volatile fatty acids (VFA) production (P<0.05) in the presence of biochar – increasing at high doses – irrespective of the type of starting material considered. This increase in VFA was also observed when biochar were added to hay before in vitro incubation, and was enhanced with low-temperature biochar. None of the mixtures of biochar and hay had any significant effect on methane emissions and ammonia released. There was no effect of starting material type or post-treatment on the in vitro incubations. The results obtained in this research demonstrate the lack of negative effect of biochar mixed with grass silage, or hay, on rumen chemistry during in vitro incubations. If large-scale studies including in vivo feeding of cattle with biochar confirm these findings, the use of cattle as a delivery system could become a novel solution to safely apply biochar to New Zealand pastoral soils.
The training video below demonstrates some general principles of wine analysis. DVDs can be requested free of charge by simply adding a note to your online order.

To choose a chapter, play the video and select the required chapter from the options on the video display.

Chapter 1: Introduction
Chapter 2: MegaQuant Assay Format
Chapter 3: Manual Format – Recording Spectrophotometer
Chapter 4: Manual Format –Non Recording Spectrophotometer
Chapter 5: Autoanalyser Format
Chapter 6: Liquid Ready Reagents
Chapter 7: Sample Preparation/PVPP Treatment

Related Products

For the specific assay of D-lactic acid.
Suitable for manual, auto-analyser and microplate formats.
Product Code:K-DATE
For the specific and rapid concurrent assay of L-lactic acid (L-lactate) and D-lactic acid (D-lactate) in beverages, meat, dairy and food products. (100 determinations per kit; 50 of each).
Product Code:K-DLATE
For the rapid assay of lactose D-galactose and L-arabinose.
Product Code:K-LACGAR
EC 1.1.1.27
(S)-lactate:NAD+ oxidoreductase. From porcine origin. In 3.2 M ammonium sulphate.
Product Code:E-LLDHP
EC 1.1.1.28. New and Improved. Recombinant from L. mesenteroide. In 3.2 M ammonium sulphate. Specific activity: 887 U/mg (25oC, pH 7.0).
Product Code:E-DLDHLM