L-Malic Acid Assay Kit (Manual Format)

L-Malic Acid (Regular) Assay Kit, for the specific assay of L-malic acid (L-malate) in beverages and food products.

Image unavailable
Product Code
58 assays (manual) / 580 (microplate)
116 assays (manual) / 1160 (microplate)

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

Manual format UV-method for the determination of L-Malic Acid in foodstuffs, beverages and other materials

                     (L-malate dehydrogenase)
(1) L-Malic acid + NAD+ ↔ oxaloacetate + NADH + H+

                    (glutamate-oxaloacetate transaminase)
(2) Oxaloacetate + L-glutamate → L-aspartate + 2-oxoglutarate

Kit size:                        (K-LMAL-58A)
                                       * 58 assays (manual) / 580 (microplate) or
                                      * 116 assays (manual) / 1160 (microplate)
* The number of manual tests per kit can be doubled if all volumes are halved. 
This can be readily accommodated using the MegaQuantTM
Spectrophotometer (D-MQWAVE).

Method:                        Spectrophotometric at 340 nm
Reaction time:             
~ 3 min
Detection limit:            
0.25 mg/L
Application examples:
Wine, beer, fruit juices, soft drinks, candies, fruit and vegetables,
bread, cosmetics, pharmaceuticals and other materials (e.g. biological
cultures, samples, etc.)
Method recognition:    
Methods based on this principle have been accepted by AOAC, EEC,


  • PVP incorporated to prevent tannin inhibition
  • Both enzymes supplied as stable suspensions
  • Very competitive price (cost per test)
  • All reagents stable for > 2 years after preparation
  • Very rapid reaction (~ 3 min)
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing
  • Standard included
  • Extended cofactors stability
  • Suitable for manual and microplate format

Grape and wine analysis: Oenologists to exploit advanced test kits.

Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.

Megazyme “advanced” wine test kits general characteristics and validation.

Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.

Are Enterococcus populations present during malolactic fermentation of red wine safe? (K-LMAL-58A)

Pérez-Martín, F., Seseña, S., Izquierdo, P. M. & Palop, M. L. (2014). Food Microbiology, 42, 95-101.

Genetic diversity of Oenoccoccus oeni isolated from wines treated with phenolic extracts as antimicrobial agents. (K-LMAL-58A)

García-Ruiz, A., Tabasco, R., Requena, T., Claisse, O., Lonvaud-Funel, A., Bartolomé, B. & Moreno-Arribas, M. (2013). Food Microbiology, 36(2), 267-274.

Anaerobic organic acid metabolism of Candida zemplinina in comparison with Saccharomyces wine yeasts. (K-LMAL-58A)

Magyar, I., Nyitrai-Sárdy, D., Leskó, A., Pomázi, A. & Kállay, M. (2014). International Journal of Food Microbiology, 178, 1-6.

Antimicrobial phenolic extracts able to inhibit lactic acid bacteria growth and wine malolactic fermentation. (K-LMAL-58A)

García-Ruiz, A., Cueva, C., González-Rompinelli, E. M., Yuste, M., Torres, M., Martín-Álvarez, P. J., Bartolome, B. & Moreno-Arribas, M. (2012). Food Control, 28(2), 212-219.

Impact of γ-irradiation on antioxidant capacity of mango (Mangifera indica L.) wine from eight Indian cultivars and the protection of mango wine against DNA damage caused by irradiation.

Kondapalli, N., Sadineni, V., Variyar, P. S., Sharma, A. & Obulam, V. S. R. (2014). Process Biochemistry, 49(11), 1819-1830.

Water stress and abscisic acid treatments induce the CAM pathway in the epiphytic fern Vittaria lineata (L.).

Minardi, B. D., Voytena, A. P. L., Santos, M. & Randi, Á. M. (2014). Photosynthetica, 52(3), 404-412.

Influence of ethanol, malate and arginine on histamine production of Lactobacillus hilgardii isolated from an Italian red wine. (K-LMAL-116A)

Mazzoli, R., Lamberti, C., Coisson, J. D., Purrotti, M., Arlorio, M., Giuffrida, M. G., Giunta, C. & Pessione, E. (2009). Amino acids, 36(1), 81-89.

Immobilization of Oenococcus oeni in lentikats® to develop malolactic fermentation in wines. (K-LMAL-116A)

Rodríguez‐Nogales, J. M., Vila‐Crespo, J. & Fernández‐Fernández, E. (2013). Biotechnology Progress, 29(1), 60-65.

Optimization of air-blast drying process for manufacturing Saccharomyces cerevisiae and non-Saccharomyces yeast as industrial wine starters.

Lee, S. B., Choi, W. S., Jo, H. J., Yeo, S. H. & Park, H. D. (2016). AMB Express, 6(1), 105.

Metabolomic Measurements at Three Time Points of a Chardonnay Wine Fermentation with Saccharomyces cerevisiae.

Richter, C. L., Kennedy, A. D., Guo, L. & Dokoozlian, N. (2015). American Journal of Enology and Viticulture, 66(3), 294-301.

Overexpression of a C4-dicarboxylate transporter is the key for rerouting citric acid to C4-dicarboxylic acid production in Aspergillus carbonarius.

Yang, L., Christakou, E., Vang, J., Lübeck, M. & Lübeck, P. S. (2017). Microbial Cell Factories, 16(1), 43.

Non-anthocyanin polyphenolic transformation by native yeast and bacteria co-inoculation strategy during vinification.

Devi, A., Archana, K. M., Bhavya, P. K. & Anu Appaiah, K. A. (2017). Journal of the Science of Food and Agriculture, 98(3), 1162-1170.

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.