CAS: 70281-36-6
Molecular Formula: C36H62O31
Molecular Weight: 990.9
Purity: > 95%

High purity Mannohexaose for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

Product Code
20 mg

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research.

Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., Ralet, M. C., Farkas, V., Von Schantz, L., Marcus, S. E., Andersen, M.C. F., Field, R., Ohlin, M., Knox, J. P., Clausen, M. H. & Willats, W. G. T. (2012). Journal of Biological Chemistry, 287(47), 39429-39438.

Promiscuity in ligand-binding: the three-dimensional structure of a Piromyces carbohydrate-binding module, CBM29-2, in complex with cello-and mannohexaose.

Charnock, S. J., Bolam, D. N., Nurizzo, D., Szabó, L., McKie, V. A., Gilbert, H. J. & Davies, G. J. (2002). Proceedings of the National Academy of Sciences, 99(22), 14077-14082.

Functional characterization and target discovery of glycoside hydrolases from the digestome of the lower termite Coptotermes gestroi.

Cairo, J. P. L. F., Leonardo, F. C., Alvarez, T. M., Ribeiro, D. A., Büchli, F., Costa-Leonardo, A. M., Carazzolle, M. F., Costa, F. F., Paes Leme, A. F., Pereira, G. A. G. & Squina, F. M. (2011). Biotechnology for Biofuels, 4(1), 50.

Influence of a mannan binding family 32 carbohydrate binding module on the activity of the appended mannanase.

Mizutani, K., Fernandes, V. O., Karita, S., Luís, A. S., Sakka, M., Kimura, T., Jackson, A., Zhang, X., Fontes, C. M. G. A., Gilbert, H. J. & Sakka, K. (2012). Applied and Environmental Microbiology, 78(14), 4781-4787.

Isolation and purification of thermostable β-mannanase from Paenibacillus illinoisensis ZY-08.

Lee, Y. S., Zhou, Y., Park, I. H., Chandra, M. R. G. S., Ahn, S. C. & Choi, Y. L. (2010). Journal of the Korean Society for Applied Biological Chemistry, 53(1), 1-7.

Model for random hydrolysis and end degradation of linear polysaccharides: Application to the thermal treatment of mannan in solution.

Nattorp, A., Graf, M., Spühler, C. & Renken, A. (1999). Industrial & Engineering Chemistry Research, 38(8), 2919-2926.

Molecular and biochemical characterization of endo-β-mannanases from germinating coffee (Coffea Arabica) grains.

Marraccini, P., Rogers, J. W., Allard, C., André, M. L., Caillet, V., Lacoste, N., Lausamme, F. & Michaux, S. (2001). Planta, 213(2), 296-308.

Hydrolysis of (1,4)- β-D-mannans in barley (Hordeum vulgare L.) is mediated by the concerted action of (1,4)-β-D-mannan endohydrolase and β-D-mannosidase.

Hrmova, M., Burton, R. A., Biely, P., Lahnstein, J. & Fincher, G. (2006). Biochem. J, 399, 77-90.

Molecular insights into substrate specificity and thermal stability of a bacterial GH5-CBM27 endo-1,4-β-D-mannanase.

dos Santos, C. R., Paiva, J. H., Meza, A. N., Cota, J., Alvarez, T. M., Ruller, R., Prade, R. A., Squina, F. M. & Murakami, M. T. (2012). Journal of Structural Biology, 177(2), 469-476.

Structural characterization of neutral oligosaccharides by laser-enhanced in-source decay of MALDI-FTICR MS.

Yang, H., Yu, Y., Song, F. & Liu, S. (2011). Journal of The American Society for Mass Spectrometry, 22(5), 845-855.

Family 34 glycosyltransferase (GT34) genes and proteins in Pinus radiata (radiata pine) and Pinus taeda (loblolly pine).

Ade, C. P., Bemm, F., Dickson, J. M. J., Walter, C. & Harris, P. J. (2014). The Plant Journal, 78(2), 305-318.

The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation.

Hogg, D., Pell, G., Dupree, P., Goubet, F., Martin-Orue, S., Armand, S. & Gilbert, H. (2003). Biochem. J, 371(3), 1027-1043.

A comparison between a yeast cell wall extract (Bio-Mos®) and palm kernel expeller as mannan-oligosac-charides sources on the performance and ileal microbial population of broiler chickens.

Navidshad, B., Liang, J. B., Jahromi, M. F., Akhlaghi, A. & Abdullah, N. (2015). Italian Journal of Animal Science, 14(1), 3452.

A Novel β-1, 4-mannanase Isolated from Paenibacillus polymyxa KT551.

Hori, K., Kawabata, Y., Nakazawa, Y., Nishizawa, M. & Toeda, K. (2014). Food Science and Technology Research, 20(6), 1261-1265.

Biochemical characterization of an acidophilic β-mannanase from Gloeophyllum trabeum CBS900. 73 with significant transglycosylation activity and feed digesting ability.

Wang, C., Zhang, J., Wang, Y., Niu, C., Ma, R., Wang, Y., Bai, Y., Luo, H. & Yao, B. (2016). Food Chemistry, 197, 474-481.

An Aspergillus nidulans GH26 endo-β-mannanase with a novel degradation pattern on highly substituted galactomannans.

von Freiesleben, P., Spodsberg, N., Blicher, T. H., Anderson, L., Jørgensen, H., Stålbrand, H., Meyer, A. S. & Krogh, K. B. (2016). Enzyme and Microbial Technology, 83, 68-77.

A novel thermostable GH5_7 β-mannanase from Bacillus pumilus GBSW19 and its application in manno-oligosaccharides (MOS) production.

Zang, H., Xie, S., Wu, H., Wang, W., Shao, X., Wu, L., Rajer, F. U. & Gao, X. (2015). Enzyme and microbial technology, 78, 1-9.

High-level expression and characterization of a thermophilic β-mannanase from Aspergillus niger in Pichia pastoris.

Yu, S., Li, Z., Wang, Y., Chen, W., Fu, L., Tang, W., Chen, C., Liu, Y., Zhang, X. & Ma, L. (2015). Biotechnology Letters, 37(9), 1853-1859.

From native malt to pure starch-Development and characterization of a purification procedure for modified starch.

Rittenauer, M., Kolesnik, L., Gastl, M. & Becker, T. (2016). Food Hydrocolloids, 56, 50-57.

Mannan endo-1, 4-β-mannosidase from Kitasatospora sp. isolated in Indonesia and its potential for production of mannooligosaccharides from mannan polymers.

Rahmani, N., Kashiwagi, N., Lee, J., Niimi-Nakamura, S., Matsumoto, H., Kahar, P., Lisdiyanti, P., Yopi, Prasetya, B., Ogino, C. & Kondo, A. (2017). AMB Express, 7(1), 100.