Mannopentaose

CAS: 70281-35-5
Molecular Formula: C30H52O26
Molecular Weight: 828.7
Purity: > 95%

High purity Mannopentaose for use in research, biochemical enzyme assays and in vitro diagnostic analysis. 

Product Code
Content/size
Stock
Price
Qty
O-MPE
30 mg
$161.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research.

Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., Ralet, M. C., Farkas, V., Von Schantz, L., Marcus, S. E., Andersen, M.C. F., Field, R., Ohlin, M., Knox, J. P., Clausen, M. H. & Willats, W. G. T. (2012). Journal of Biological Chemistry, 287(47), 39429-39438.

A cellulose-binding module of the Trichoderma reesei β-mannanase Man5A increases the mannan-hydrolysis of complex substrates.

Hägglund, P., Eriksson, T., Collén, A., Nerinckx, W., Claeyssens, M. & Stålbrand, H. (2003). Journal of Biotechnology, 101(1), 37-48.

Fractionation of extracted hemicellulosic saccharides from Pinus pinaster wood by multistep membrane processing.

González-Muñoz, M. J., Rivas, S., Santos, V. & Parajó, J. C. (2013). Journal of Membrane Science, 428, 281-289.

Structure of a mannan-specific family 35 carbohydrate-binding module: evidence for significant conformational changes upon ligand binding.

Tunnicliffe, R. B., Bolam, D. N., Pell, G., Gilbert, H. J. & Williamson, M. P. (2005). Journal of Molecular Biology, 347(2), 287-296.

A (1→4)-β-mannan-specific monoclonal antibody and its use in the immunocytochemical location of galactomannans.

Pettolino, F. A., Hoogenraad, N. J., Ferguson, C., Bacic, A., Johnson, E. & Stone, B. A. (2001). Planta, 214(2), 235-242.

A novel thermophilic endo-β-1, 4-mannanase from Aspergillus nidulans XZ3: functional roles of carbohydrate-binding module and Thr/Ser-rich linker region.

Lu, H., Luo, H., Shi, P., Huang, H., Meng, K., Yang, P. & Yao, B. (2014). Applied Microbiology and Biotechnology, 98(5), 2155-2163.

LeMAN4 endo-β-mannanase from ripe tomato fruit can act as a mannan transglycosylase or hydrolase.

Schröder, R., Wegrzyn, T. F., Sharma, N. N. & Atkinson, R. G. (2006). Planta, 224(5), 1091-1102.

Substrate Specificities of α-Galactosidase from Rice.

Li, S. H., Zhu, M. P. & Li, T. P. (2011). Advanced Materials Research, 183, 447-451.

The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation.

Hogg, D., Pell, G., Dupree, P., Goubet, F., Martin-Orue, S., Armand, S. & Gilbert, H. (2003). Biochem. J, 371, 1027-1043.

Model for random hydrolysis and end degradation of linear polysaccharides: Application to the thermal treatment of mannan in solution.

Nattorp, A., Graf, M., Spühler, C. & Renken, A. (1999). Industrial & Engineering Chemistry Research, 38(8), 2919-2926.

Acidic β-mannanase from Penicillium pinophilum C1: Cloning, characterization and assessment of its potential for animal feed application.

Cai, H., Shi, P., Luo, H., Bai, Y., Huang, H., Yang, P. & Yao, B. (2011). Journal of Bioscience and Bioengineering, 112(6), 551-557.

Two-stage hot-water extraction of galactoglucomannans from spruce wood.

Pranovich, A., Holmbom, B. & Willför, S. (2016). Journal of Wood Chemistry and Technology, 36(2), 140-156.

A comparison between a yeast cell wall extract (Bio-Mos®) and palm kernel expeller as mannan-oligosac-charides sources on the performance and ileal microbial population of broiler chickens.

Navidshad, B., Liang, J. B., Jahromi, M. F., Akhlaghi, A. & Abdullah, N. (2015). Italian Journal of Animal Science, 14(1), 3452.

A Novel β-1, 4-mannanase Isolated from Paenibacillus polymyxa KT551.

Hori, K., Kawabata, Y., Nakazawa, Y., Nishizawa, M. & Toeda, K. (2014). Food Science and Technology Research, 20(6), 1261-1265.

Biochemical characterization of an acidophilic β-mannanase from Gloeophyllum trabeum CBS900. 73 with significant transglycosylation activity and feed digesting ability.

Wang, C., Zhang, J., Wang, Y., Niu, C., Ma, R., Wang, Y., Bai, Y., Luo, H. & Yao, B. (2016). Food Chemistry, 197, 474-481.

An Aspergillus nidulans GH26 endo-β-mannanase with a novel degradation pattern on highly substituted galactomannans.

von Freiesleben, P., Spodsberg, N., Blicher, T. H., Anderson, L., Jørgensen, H., Stålbrand, H., Meyer, A. S. & Krogh, K. B. (2016). Enzyme and Microbial Technology, 83, 68-77.

A novel thermostable GH5_7 β-mannanase from Bacillus pumilus GBSW19 and its application in manno-oligosaccharides (MOS) production.

Zang, H., Xie, S., Wu, H., Wang, W., Shao, X., Wu, L., Rajer, F. U. & Gao, X. (2015). Enzyme and microbial technology, 78, 1-9.

High-level expression and characterization of a thermophilic β-mannanase from Aspergillus niger in Pichia pastoris.

Yu, S., Li, Z., Wang, Y., Chen, W., Fu, L., Tang, W., Chen, C., Liu, Y., Zhang, X. & Ma, L. (2015). Biotechnology Letters, 37(9), 1853-1859.

From native malt to pure starch-Development and characterization of a purification procedure for modified starch.

Rittenauer, M., Kolesnik, L., Gastl, M. & Becker, T. (2016). Food Hydrocolloids, 56, 50-57.

Mannan endo-1, 4-β-mannosidase from Kitasatospora sp. isolated in Indonesia and its potential for production of mannooligosaccharides from mannan polymers.

Rahmani, N., Kashiwagi, N., Lee, J., Niimi-Nakamura, S., Matsumoto, H., Kahar, P., Lisdiyanti, P., Yopi, Prasetya, B., Ogino, C. & Kondo, A. (2017). AMB Express, 7(1), 100.