Mannotriose

CAS: 28173-52-6
Molecular Formula: C18H32O16
Molecular Weight: 504.4
Purity: > 95%

High purity Mannotriose for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

Product Code
Content/size
Stock
Price
Qty
O-MTR
50 mg
$198.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research.

Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., Ralet, M. C., Farkas, V., Von Schantz, L., Marcus, S. E., Andersen, M.C. F., Field, R., Ohlin, M., Knox, J. P., Clausen, M. H. & Willats, W. G. T. (2012). Journal of Biological Chemistry, 287(47), 39429-39438.

Softwood hemicellulose-degrading enzymes from Aspergillus niger: Purification and properties of a β-mannanase.

Ademark, P., Varga, A., Medve, J., Harjunpää, V., Drakenberg, T., Tjerneld, F. & Stålbrand, H. (1998). Journal of Biotechnology, 63(3), 199-210.

Protein release from galactoglucomannan hydrogels: influence of substitutions and enzymatic hydrolysis by β-mannanase.

Roos, A. A., Edlund, U., Sjoberg, J., Albertsson, A. C. & Stålbrand, H. (2008). Biomacromolecules, 9(8), 2104-2110.

Mannotriose regulates learning and memory signal transduction in the hippocampus.

Zhang, L., Dai, W., Zhang, X., Gong, Z. & Jin, G. (2013). Neural Regeneration Research, 8(32), 3020-3026.

Operational and storage stability of neutral β-mannanase from Bacillus licheniformis.

Zhang, J., He, M. & He, Z. (2002). Biotechnology Letters, 24(19), 1611-1613.

Substrate Specificities of α-Galactosidase from Rice.

Li, S. H., Zhu, M. P. & Li, T. P. (2011). Advanced Materials Research, 183, 447-451.

Purification and characterization of two β-mannanases from Trichoderma reesei.

Stålbrand, H., Siika-aho, M., Tenkanen, M. & Viikari, L. (1993). Journal of Biotechnology, 29(3), 229-242.

Fractionation of extracted hemicellulosic saccharides from Pinus pinaster wood by multistep membrane processing.

González-Muñoz, M. J., Rivas, S., Santos, V. & Parajó, J. C. (2013). Journal of Membrane Science, 428, 281-289.

β-Mannanolytic system of Aureobasidium pullulans.

Kremnický, L. & Biely, P. (1997). Archives of Microbiology, 167(6), 350-355.

The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation.

Hogg, D., Pell, G., Dupree, P., Goubet, F., Martin-Orue, S., Armand, S. & Gilbert, H. (2003). Biochem. J, 371(3), 1027-1043.

Two-stage hot-water extraction of galactoglucomannans from spruce wood.

Pranovich, A., Holmbom, B. & Willför, S. (2016). Journal of Wood Chemistry and Technology, 36(2), 140-156.

A comparison between a yeast cell wall extract (Bio-Mos®) and palm kernel expeller as mannan-oligosac-charides sources on the performance and ileal microbial population of broiler chickens.

Navidshad, B., Liang, J. B., Jahromi, M. F., Akhlaghi, A. & Abdullah, N. (2015). Italian Journal of Animal Science, 14(1), 3452.

A Novel β-1, 4-mannanase Isolated from Paenibacillus polymyxa KT551.

Hori, K., Kawabata, Y., Nakazawa, Y., Nishizawa, M. & Toeda, K. (2014). Food Science and Technology Research, 20(6), 1261-1265.

Biochemical characterization of an acidophilic β-mannanase from Gloeophyllum trabeum CBS900. 73 with significant transglycosylation activity and feed digesting ability.

Wang, C., Zhang, J., Wang, Y., Niu, C., Ma, R., Wang, Y., Bai, Y., Luo, H. & Yao, B. (2016). Food Chemistry, 197, 474-481.

An Aspergillus nidulans GH26 endo-β-mannanase with a novel degradation pattern on highly substituted galactomannans.

von Freiesleben, P., Spodsberg, N., Blicher, T. H., Anderson, L., Jørgensen, H., Stålbrand, H., Meyer, A. S. & Krogh, K. B. (2016). Enzyme and Microbial Technology, 83, 68-77.

A novel thermostable GH5_7 β-mannanase from Bacillus pumilus GBSW19 and its application in manno-oligosaccharides (MOS) production.

Zang, H., Xie, S., Wu, H., Wang, W., Shao, X., Wu, L., Rajer, F. U. & Gao, X. (2015). Enzyme and microbial technology, 78, 1-9.

High-level expression and characterization of a thermophilic β-mannanase from Aspergillus niger in Pichia pastoris.

Yu, S., Li, Z., Wang, Y., Chen, W., Fu, L., Tang, W., Chen, C., Liu, Y., Zhang, X. & Ma, L. (2015). Biotechnology Letters, 37(9), 1853-1859.

From native malt to pure starch-Development and characterization of a purification procedure for modified starch.

Rittenauer, M., Kolesnik, L., Gastl, M. & Becker, T. (2016). Food Hydrocolloids, 56, 50-57.

An extremely alkaline mannanase from Streptomyces sp. CS428 hydrolyzes galactomannan producing series of mannooligosaccharides.

Pradeep, G. C., Cho, S. S., Choi, Y. H., Choi, Y. S., Jee, J. P., Seong, C. N. & Yoo, J. C. (2016). World Journal of Microbiology and Biotechnology, 32(5), 1-9.

Transglycosylation reactions, a main mechanism of phenolics incorporation in coffee melanoidins: inhibition by Maillard reaction.

Moreira, A. S., Nunes, F. M., Simões, C., Maciel, E., Domingues, P., Domingues, M. R. M. & Coimbra, M. A. (2017). Food Chemistry, 227, 422-431.