Pectate lyase (Cellvibrio japonicus

High purity recombinant Pectate lyase (Cellvibrio japonicus) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

CAZy Family: PL10
CAS: 9015-75-2

pectate lyase; (1,4)-alpha-D-galacturonan lyase

Recombinant. From Cellvibrio japonicus
In 3.2 M ammonium sulphate.
Supplied at ~ 500 U/mL. 

Specific activity:
~ 500 U/mg (40oC, pH 10.0 on polygalacturonic acid).

Stability: > 4 years at 4oC.

Product Code
2,500 Units

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page


Pectate lyase (Cellvibrio japonicus

CAZy Family: PL10

CAS: 9015-75-2

pectate lyase; (1,4)-alpha-D-galacturonan lyase 

In 3.2 M ammonium sulphate.

> 4 years at 4oC.

Specific activity:
~ 500 U/mg (40oC, pH 10.0 on polygalacturonic acid).

Unit definition:
One Unit of pectate lyase activity is defined as the amount of enzyme required to release one µmole of 4,5-unsaturated product per minute from polygalacturonic acid (1.25 mg/mL) in the presence of calcium chloride (1 mM) in CAPS buffer (50 mM), pH 10.0 at 40oC.

Eliminative cleavage of (1,4)-α-D-galacturonan to give oligosaccharides with 4-deoxy-α-D-galact-4-enuronosyl groups at their non-reducing ends.

Applications in carbohydrate and biofuels research.

A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells.

Park, S., Szumlanski, A. L., Gu, F., Guo, F. & Nielsen, E. (2011). Nature Cell Biology, 13(8), 973-980.

Matrix solubilization and cell wall weakening by β-expansin (group‐1 allergen) from maize pollen.

Tabuchi, A., Li, L. C. & Cosgrove, D. J. (2011). The Plant Journal, 68(3), 546-559.

Comparative glycan profiling of Ceratopteris richardii ‘C-Fern’gametophytes and sporophytes links cell-wall composition to functional specialization.

Eeckhout, S., Leroux, O., Willats, W. G. T., Popper, Z. A. & Viane, R. L. L. (2014). Annals of Botany, mcu039.

Changes in cell wall biomechanical properties in the xyloglucan-deficient xxt1/xxt2 mutant of Arabidopsis.

Park, Y. B. & Cosgrove, D. J. (2012). Plant Physiology, 158(1), 465-475.

Pectin Metabolism and Assembly in the Cell Wall of the Charophyte Green Alga Penium margaritaceum.

Domozych, D. S., Sørensen, I., Popper, Z. A., Ochs, J., Andreas, A., Fangel, J. U., Pielach, A., Sacks, C., Brechka, H., Ruisi-Besares, P., Willats, W. G. & Rose, J. K. C. (2014). Plant Physiology, 165(1), 105-18.

Recognition of xyloglucan by the crystalline cellulose‐binding site of a family 3a carbohydrate‐binding module.

Hernandez-Gomez, M. C., Rydahl, M. G., Rogowski, A., Morland, C., Cartmell, A., Crouch, L., Labourel, A., Fontes, C. M. G. A., Willats, W. G. T., Gilbert, H. J. & Knox, J. P. (2015). FEBS Letters, 589(18), 2297-2303.

Investigating dehydration-induced physical strains of cellulose microfibrils in plant cell walls.

Huang, S., Makarem, M., Kiemle, S. N., Zheng, Y., He, X., Ye, D., Gomaz, E. W., Gomaz, E. D., Cosgrove, D. J. & Kim, S. H. (2018). Carbohydrate Polymers, 197, 337-348.