Primary Amino Nitrogen Assay Kit (PANOPA) 

The Primary Amino Nitrogen (PANOPA) Assay Kit is suitable for the measurement and analysis of primary amino nitrogen in grape juice/must and wine.

Suitable for manual, auto-analyser and microplate formats.

Image unavailable
Product Code
100 assays (manual) / 1000 assays (microplate)
/ 1100 assays (auto-analyser)

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

UV-method for the determination of Primary Amino Nitrogen in
grape juice, must, wine and other materials

                                                                               (room temperature)
(1) Amino nitrogen + N-acetyl-L-cysteine + o-phthaldialdehyde →
                                                                               isoindole derivative

Kit size:                             * 100 assays (manual) / 1000 (microplate)
                                          / 1100 (autoanalyser)

The number of manual tests per kit can be doubled if all volumes are halved. 
This can be readily accommodated using the MegaQuantTM Wave
Spectrophotometer (D-MQWAVE).

Method:                            Spectrophotometric at 340 nm
Reaction time:                  ~ 15 min
Detection limit:                 2.59 mg N/L
Application examples:
Grape juice, must, wine and other materials
Method recognition:        Novel method


  • Simple format (absorbances read at 340 nm)
  • Very competitive price (cost per test)
  • All reagents stable for > 2 years after preparation
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing
  • Standard included
  • Suitable for manual, microplate and auto-analyser formats

Grape and wine analysis: Oenologists to exploit advanced test kits.

Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.

Megazyme “advanced” wine test kits general characteristics and validation.

Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.

Fermentation of stalk juices from different Nigerian sorghum cultivars to ethanol.

Nasidi, M., Agu, R., Yusuf Deeni, Y. & Walker, G. (2013). Bioethanol, 1(1), 20-27.

Sensor combination and chemometric variable selection for online monitoring of Streptomyces coelicolor fed-batch cultivations.

Ödman, P., Johansen, C. L., Olsson, L., Gernaey, K. V. & Lantz, A. E. (2010). Applied Microbiology and Biotechnology, 86(6), 1745-1759.

Analysis of protein and total usable nitrogen in beer and wine using a microwell ninhydrin assay.

Abernathy, D. G., Spedding, G. & Starcher, B. (2009). Journal of the Institute of Brewing, 115(2), 122-127.

Gene delivery using dendrimer-entrapped gold nanoparticles as nonviral vectors.

Shan, Y., Luo, T., Peng, C., Sheng, R., Cao, A., Cao, X., Shen, M., Guo, R., Tomas, H. & Shi, X. (2012). Biomaterials, 33(10), 3025-3035.

Grape contribution to wine aroma: production of hexyl acetate, octyl acetate, and benzyl acetate during yeast fermentation is dependent upon precursors in the must.

Dennis, E. G., Keyzers, R. A., Kalua, C. M., Maffei, S. M., Nicholson, E. L. & Boss, P. K. (2012). Journal of Agricultural and Food Chemistry, 60(10), 2638-2646.

Dendrimer-entrapped gold nanoparticles modified with folic acid for targeted gene delivery applications.

Xiao, T., Hou, W., Cao, X., Wen, S., Shen, M. & Shi, X. (2013). Biomaterials Science, 1(11), 1172-1180.

Growth and lipid production of Umbelopsis isabellina on a solid substrate—Mechanistic modeling and validation.

Meeuwse, P., Klok, A. J., Haemers, S., Tramper, J. & Rinzema, A. (2012). Process Biochemistry, 47(8), 1228-1242.

Sauvignon blanc metabolomics: grape juice metabolites affecting the development of varietal thiols and other aroma compounds in wines.

Pinu, F. R., Edwards, P. J. B., Jouanneau, S., Kilmartin, P. A., Gardner, R. C. & Villas-Boas, S. G. (2014). Metabolomics, 10(4), 556-573.

Changes in the volatile compound production of fermentations made from musts with increasing grape content.

Keyzers, R. A. & Boss, P. K. (2009). Journal of Agricultural and Food Chemistry, 58(2), 1153-1164.

RGD peptide-modified dendrimer-entrapped gold nanoparticles enable highly efficient and specific gene delivery to stem cells.

Kong, L., Alves, C. S., Hou, W., Qiu, J., Möhwald, H., Tomás, H. & Shi, X. (2015). ACS Applied Materials & Interfaces, 7(8), 4833-4843.

Designing and creating Saccharomyces interspecific hybrids for improved, industry relevant, phenotypes.

Bellon, J. R., Yang, F., Day, M. P., Inglis, D. L. & Chambers, P. J. (2015). Applied Microbiology and Biotechnology, 99(20), 8597-8609.

Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers.

Slininger, P. J., Dien, B. S., Kurtzman, C. P., Moser, B. R., Bakota, E. L., Thompson, S. R., O'Bryan, P. J., Cotta, M. A., Balan, V., Jin, M., Sousa, L. D. C. & Dale, B. E. & Sousa, L. D. C. (2016). Biotechnology and Bioengineering, 113(8), 1676-1690.

Partially PEGylated dendrimer-entrapped gold nanoparticles: a promising nanoplatform for highly efficient DNA and siRNA delivery.

Hou, W., Wei, P., Kong, L., Guo, R., Wang, S. & Shi, X. (2016). Journal of Materials Chemistry B, 4(17), 2933-2943.

The interactive effect of fungicide residues and yeast assimilable nitrogen on fermentation kinetics and hydrogen sulfide production during cider fermentation.

Boudreau, T. F., Peck, G. M., O'Keefe, S. F. & Stewart, A. C. (2017). Journal of the Science of Food and Agriculture, 97(2), 693-704.

A survey of yeast from the Yarrowia clade for lipid production in dilute acid pretreated lignocellulosic biomass hydrolysate.

Quarterman, J., Slininger, P. J., Kurtzman, C. P., Thompson, S. R. & Dien, B. S. (2016). Applied Microbiology and Biotechnology, 101(8), 3319-3334.

Fermentation of grapes throughout development identifies stages critical to the development of wine volatile composition.

Boss, P. K., Kalua, C. M., Nicholson, E. L., Maffei, S. M., Böttcher, C. & Davies, C. (2017). Australian Journal of Grape and Wine Research, 24(1), 24-37.

Hydrogen sulphide production during cider fermentation is moderated by pre‐fermentation methionine addition.

Boudreau, T. F., Peck, G. M., Ma, S., Patrick, N., Duncan, S., O'Keefe, S. F. & Stewart, A. C. Journal of the Institute of Brewing, 123(4), 553-561.

Augmentation of chemical and organoleptic properties in Syzygium cumini wine by incorporation of grape seeds during vinification.

VenuGopal, K. S., Cherita, C. & Anu-Appaiah, K. A. (2018). Food Chemistry, 242, 98-105.

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.