Protease (Subtilisin A from Bacillus licheniformis)

High purity Protease (Subtilisin A from Bacillus licheniformis) (liquid) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

EC 3.4.21.62
CAS: 9014-01-1 

subtilisin; subtilisin A

Highly purified. From Bacillus licheniformis.  
In 50% (v/v) glycerol.

For use in Megazyme Total Dietary Fiber test method. 

E-BSPRT-A-100ML specifically to be used with ANKOMTDF Dietary Fiber Analyzer.

Specific activity:
~ 6 U/mg of protein (40oC, pH 8.0 on casein). 

Stability: > 4 years at 4oC.

Data booklets for each pack size are located in the Documentation tab.

View Megazyme’s latest Guide for Dietary Fiber Analysis.

Product Code
Content/Size
Stock
Price
Qty
E-BSPRT-10ML
0.5 grams - 10ML
$106.00
E-BSPRT-40ML
2 grams - 40ML
$271.00
E-BSPRT-100ML
5 grams - 100ML
$543.00
E-BSPRT-A-100ML
2.5 grams - 100ML (ANKOM)
$270.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

DESCRIPTION

Protease (Subtilisin A from Bacillus licheniformis)

EC 3.4.21.62
CAS: 9014-01-1 

Synonyms:
subtilisin; subtilisin A 

Form:
In 50% (v/v) glycerol.

Stability: 
> 4 years at 4oC.

Specific activity:
~ 6 U/mg of protein (40oC, pH 8.0 on casein). 

Unit definition:
One Unit will hydrolyse casein to produce colour equivalent to one µmole (181 µg) of tyrosine per minute at pH 7.0 at 40oC (colour by Folin-Ciocalteu reagent).

Specificity:
Hydrolysis of proteins with broad specificity for peptide bonds, and a preference for a large uncharged residue in P1. Hydrolyses peptide amides.

Applications:
This enzyme is recommended for use in the Megazyme Total Dietary Fiber test method and AOAC INTERNATIONAL Total Dietary Fibre analytical procedures.

Measuring dietary fibre.

McCleary, B. V. (1999). The World of Ingredients, 50-53.

Two issues in dietary fiber measurement.

McCleary, B. V. (2001). Cereal Foods World, 46, 164-165.

Dietary fibre analysis.

McCleary, B. V. (2003). Proceedings of the Nutrition Society, 62, 3-9.

Measurement of novel dietary fibres.

McCleary, B. V. & Rossiter, P. (2004). Journal of AOAC International, 87(3), 707-717.

An integrated procedure for the measurement of total dietary fibre (including resistant starch), non-digestible oligosaccharides and available carbohydrates.

McCleary, B. V. (2007). Analytical and Bioanalytical Chemistry, 389(1), 291-308.

Development and evaluation of an integrated method for the measurement of total dietary fibre.

McCleary, B. V., Mills, C. & Draga, A. (2009). Quality Assurance and Safety of Crops & Foods, 1(4), 213–224.

Determination of total dietary fiber (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: collaborative study.

McCleary, B. V., DeVries, J. W., Rader, J. I., Cohen, G., Prosky, L., Mugford, D. C., Champ, M. & Okuma, K. (2010). Journal of AOAC International, 93(1), 221-233.

Determination of insoluble, soluble, and total dietary fiber (codex definition) by enzymatic-gravimetric method and liquid chromatography: Collaborative Study.

McCleary, B. V., DeVries, J. W., Rader, J. I., Cohen, G., Prosky, P., Mugford, D. C., Champ, M. & Okuma, K. (2012). Journal of AOAC International, 95(3), 824-844.

Measurement of total dietary fiber using AOAC method 2009.01 (AACC International approved method 32-45.01): Evaluation and updates.

McCleary, B. V., Sloane, N., Draga, A. & Lazewska, I. (2013). Cereal Chemistry, 90(4), 396-414.

Modification to AOAC Official Methods 2009.01 and 2011.25 to allow for minor overestimation of low molecular weight soluble dietary fiber in samples containing starch.

McCleary, B. V. (2014). Journal of AOAC International, 97(3), 896-901.

Improvement of the AOAC 2009.01 total dietary fibre method for bread and other high starch containing matrices.

Brunt, K. & Sanders, P. (2013). Food Chemistry, 140(3), 574-580.

A simplified modification of the AOAC official method for determination of total dietary fiber using newly developed enzymes: preliminary interlaboratory study.

Kanaya, K., Tada, S., Mori, B., Takahashi, R., Ikegami, S., Kurasawa, S., Okuzaki, M., Mori, Y., Innami, S. & Negishi, Y. (2007). Journal of AOAC International, 90(1), 225-237.

Treatment of cereal products with a tailored preparation of Trichoderma enzymes increases the amount of soluble dietary fiber.

Napolitano, A., Lanzuise, S., Ruocco, M., Arlotti, G., Ranieri, R., Knutsen, S. H., Lorito, M. & Fogliano, V. (2006). Journal of Agricultural and Food Chemistry, 54(20), 7863-7869.

Starch from hull-less barley: Ultrastructure and distribution of granule-bound proteins.

Li, J. H., Vasanthan, T., Hoover, R. & Rossnagel, B. G. (2003). Cereal Chemistry, 80(5), 524-532.

Starch transformation in bran-enriched extruded wheat flour.

Robin, F., Théoduloz, C., Gianfrancesco, A., Pineau, N., Schuchmann, H. P. & Palzer, S. (2011). Carbohydrate Polymers, 85(1), 65-74.

Characterization of a new potential functional ingredient: coffee silverskin.

Borrelli, R. C., Esposito, F., Napolitano, A., Ritieni, A. & Fogliano, V. (2004). Journal of Agricultural and Food Chemistry, 52(5), 1338-1343.

Precooked Bran‐Enriched Wheat Flour Using Extrusion: Dietary Fiber Profile and Sensory Characteristics.

Gajula, H., Alavi, S., Adhikari, K. & Herald, T. (2008). Journal of Food Science, 73(4), S173-S179.

Flaxseed gum from flaxseed hulls: Extraction, fractionation, and characterization.

Qian, K. Y., Cui, S. W., Wu, Y. & Goff, H. D. (2012). Food Hydrocolloids, 28(2), 275-283.

Natural occurrence of ochratoxin A and antioxidant activities of green and roasted coffees and corresponding byproducts.

Napolitano, A., Fogliano, V., Tafuri, A. & Ritieni, A. (2007). Journal of Agricultural and Food Chemistry, 55(25), 10499-10504.

Water extract of Triticum aestivum L. and its components demonstrate protective effect in a model of vascular dementia.

Han, H. S., Jang, J. H., Jang, J. H., Choi, J. S., Kim, Y. J., Lee, C., Sun Ha Lim, S. H., Lee, H-K. & Lee, J. (2010). Journal of Medicinal Food, 13(3), 572-578.

Enzyme-aided investigation of the substituent distribution in cationic potato amylopectin starch.

Richardson, S., Nilsson, G., Cohen, A., Momcilovic, D., Brinkmalm, G. & Gorton, L. (2003). Analytical Chemistry, 75(23), 6499-6508.