Pullulanase M1 (Klebsiella planticola)

High purity Pullulanase M1 (Klebsiella planticola) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

CAZy Family: GH13
CAS: 9075-68-7 

pullulanase; pullulan 6-alpha-glucanohydrolase

Highly purified. From Klebsiella planticola. Electrophoretically homogeneous.
In 3.2 M ammonium sulphate.
Supplied at ~ 700 U/mL. 

Specific activity:
~ 30 U/mg (40oC, pH 5.0 on pullulan). 

Stability: > 4 years at 4oC.

Recommended pullulanase for research on starch structure.

Product Code
700 Units

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page


Pullulanase M1 (Klebsiella planticola)

CAZy Family: GH13
CAS: 9075-68-7 

pullulanase; pullulan 6-alpha-glucanohydrolase

In 3.2 M ammonium sulphate.

> 4 years at 4oC.

Specific activity:
~ 30 U/mg (40oC, pH 5.0 on pullulan).

Unit definition:
One Unit of pullulanase activity is defined as the amount of enzyme required to release one µmole of glucose reducing-sugar-equivalents per minute from pullulan (5 mg/mL) in sodium acetate buffer (100 mM), pH 5.0 at 40oC.

Hydrolysis of (1,6)-α-D-glucosidic linkages in pullulan, amylopectin and glycogen, and in the α- and β-limit dextrins of amylopectin and glycogen.

Applications in the cereals, food and feeds industries particularly in starch saccharification and production of high glucose or maltose syrups.

Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination.

Xia, H., Yandeau-Nelson, M., Thompson, D. B. & Guiltinan, M. J. (2011). BMC Plant Biology, 11(1), 95-107.

Rapid determination of enzyme purity by a microdialysis-based assay.

Richardson, S., Nilsson, G. S., Torto, N., Gorton, L. & Laurell, T. (1999). Analytical Communications, 36(5), 189-193.

Enzyme-aided investigation of the substituent distribution in cationic potato amylopectin starch.

Richardson, S., Nilsson, G., Cohen, A., Momcilovic, D., Brinkmalm, G. & Gorton, L. (2003). Analytical Chemistry, 75(23), 6499-6508.

Residual amylopectin structures of amylase-treated wheat starch slurries reflect amylase mode of action.

Leman, P., Goesaert, H. & Delcour, J. A. (2009). Food Hydrocolloids, 23(1), 153-164.

Differences in structures of starch hydrolysates using saliva from different individuals.

Nantanga, K. K. M., Chan, E., Suleman, S., Bertoft, E. & Seetharaman, K. (2013). Starch‐Stärke, 65(7‐8), 709-713.

Structures of human salivary amylase hydrolysates from starch processed at two water concentrations.

Nantanga, K. K. M., Bertoft, E. & Seetharaman, K. (2013). Starch‐Stärke, 65(7‐8), 637-644.

Debranching of β-dextrins to explore branching patterns of amylopectins from three maize genotypes.

Xia, H. & Thompson, D. B. (2006). Cereal Chemistry, 83(6), 668-676.

Effects of Chemical and Enzymatic Modifications on Starch–Oleic Acid Complex Formation.

Arijaje, E. O. & Wang, Y. J. (2015). Journal of Agricultural and Food Chemistry, 63(16), 4202-4210.

Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase.

Zhang, B., Zhang, L., Li, F., Zhang, D., Liu, X., Wang, H., Xu, Z., Chu, C. & Zhou, Y. (2017). Nature Plants, 3, 17017.

Responses of Synechocystis sp. PCC 6803 to heterologous biosynthetic pathways.

Vavitsas, K., Rue, E. Ø., Stefánsdóttir, L. K., Gnanasekaran, T., Blennow, A., Crocoll, C., Gudmundsson, S. & Jensen, P. E. (2017). Microbial cell factories, 16(1), 140.

Effect of hydroxypropylation and beta‐amylase treatment on complexation of debranched starch with naringenin.

Gonzalez, A., Wang, Y. J., Staroszczyk, H., Brownmiller, C. & Lee, S. O. (2018). Starch‐Stärke, In Press.

Biochemical characterization of two GH70 family 4, 6-α-glucanotransferases with distinct product specificity from Lactobacillus aviarius subsp. aviarius DSM 20655.

Meng, X., Gangoiti, J., de Kok, N., van Leeuwen, S. S., Pijning, T. & Dijkhuizen, L. (2018). Food Chemistry, In Press.

Technological, nutritional and functional properties of wheat bread enriched with lentils or carob flours.

Turfani, V., Narducci, V., Durazzo, A., Galli, V. & Carcea, M. (2016). LWT-Food Science and Technology, 78, 361-366.

Alanine aminotransferase 1 (OsAlaAT1) plays an essential role in the regulation of starch storage in rice endosperm.

Yang, J., Kim, S. R., Lee, S. K., Choi, H., Jeon, J. S. & An, G. (2015). Plant Science, 240, 79-89.

Mechanistic insights into glucan phosphatase activity against polyglucan substrates.

Meekins, D. A., Raththagala, M., Auger, K. D., Turner, B. D., Santelia, D., Kötting, O., Gentry, M. S. & Vander Kooi, C. W. (2015). Journal of Biological Chemistry, 290(38), 23361-23370.

Small differences in amylopectin fine structure may explain large functional differences of starch.

Bertoft, E., Annor, G. A., Shen, X., Rumpagaporn, P., Seetharaman, K. & Hamaker, B. R. (2016). Carbohydrate Polymers, 140, 113-121.

Molecular and thermal characterization of starches isolated from African rice (Oryza glaberrima).

Gayin, J., Bertoft, E., Manful, J., Yada, R. Y. & Abdel‐Aal, E. S. M. (2016). Starch‐Stärke, 68(1-2), 9-19.

Understanding the fine structure of intermediate materials of maize starches.

Han, W., Zhang, B., Li, J., Zhao, S., Niu, M., Jia, C. & Xiong, S. (2017). Food Chemistry, 233, 450-456.

Effect of microwave irradiation on internal molecular structure and physical properties of waxy maize starch.

Yang, Q., Qi, L., Luo, Z., Kong, X., Xiao, Z., Wang, P. & Peng, X. (2017). Food Hydrocolloids, 69, 473-482.

Molecular structure of Maori potato starch.

Zhu, F. & Hao, C. (2018). Food Hydrocolloids, 80, 206-211.

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.