Pullulanase M2 (Bacillus licheniformis

High purity Pullulanase M2 (Bacillus licheniformis) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

CAZy Family: GH13
CAS: 9075-68-7 

pullulanase; pullulan 6-alpha-glucanohydrolase

Highly purified. From Bacillus licheniformisElectrophoretically homogeneous (MW 113,000).
In 3.2 M ammonium sulphate.
Supplied at ~ 900 U/mL. 

Specific activity: 
~ 40 U/mg (40oC, pH 5.0 on pullulan).

StabilityMinimum 1 year at 4oC. Check vial for details.

Product Code
2,000 Units

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page


Pullulanase M2 (Bacillus licheniformis)

CAZy Family: GH13

CAS: 9075-68-7

pullulanase; pullulan 6-alpha-glucanohydrolase

In 3.2 M ammonium sulphate.

Minimum 1 year at 4oC. Check vial for details.

Specific activity:
~ 40 U/mg (40oC, pH 5.0 on pullulan).

Unit definition:
One Unit of pullulanase M2 activity is defined as the amount of enzyme required to release one µmole of glucose reducing-sugar-equivalents per minute from pullulan (5 mg/mL) in sodium acetate buffer (100 mM), pH 5.0 at 40oC.

Hydrolysis of (1,6)-α-D-glucosidic linkages in pullulan, amylopectin and glycogen, and in the α and β-limit dextrins of amylopectin and glycogen.

Applications in the cereals, food and feeds industries particularly in starch saccharification and production of high glucose or maltose syrups.

1‐allyloxy‐2‐hydroxy‐propyl‐starch: Synthesis and characterization.

Huijbrechts, A. A. M. L., Huang, J., Schols, H. A., Van Lagen, B., Visser, G. M., Boeriu, C. G. & Sudhölter, E. J. R. (2007). Journal of Polymer Science Part A: Polymer Chemistry, 45(13), 2734-2744.

Physicochemical properties and amylopectin chain profiles of cowpea, chickpea and yellow pea starches.

Huang, J., Schols, H. A., van Soest, J. J. G., Jin, Z., Sulmann, E. & Voragen, A. G. J. (2007). Food Chemistry, 101(4), 1338-1345.

Acetyl substitution patterns of amylose and amylopectin populations in cowpea starch modified with acetic anhydride and vinyl acetate.

Huang, J., Schols, H. A., Klaver, R., Jin, Z. & Voragen, A. G. J. (2007). Carbohydrate Polymers, 67(4), 542-550.

Production of oligosaccharides from extruded wheat and rye biomass using enzymatic treatment.

Makaravicius, T., Basinskiene, L., Juodeikiene, G., van Gool, M. P. & Schols, H. A. (2012). Catalysis Today, 196(1), 16-25.

Molecular structure and granule morphology of native and heat‐moisture‐treated pinhão starch.

Pinto, V. Z., Moomand, K., Vanier, N. L., Colussi, R., Villanova, F. A., Zavareze, E. R., Lim, L. T. & Dias, A. R. G. (2015). International Journal of Food Science & Technology, 50(2), 282-289.

A sorghum NAC gene is associated with variation in biomass properties and yield potential.

Xia, J., Zhao, Y., Burks, P., Pauly, M. & Brown, P. J. (2018). Plant Direct, 2(7), e00070.