Red Pullulan

High purity dyed, soluble Red Pullulan for the measurement of enzyme activity, for research, biochemical enzyme assays and in vitro diagnostic analysis. 

Substrate for measurement of pullulanase in commercial enzyme preparations and for the measurement of limit-dextrinase in malt flours.

Image unavailable
Product Code
3 grams

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

Measurement of the content of limit-dextrinase in cereal flours.

McCleary, B. V. (1992). Carbohydrate Research, 227, 257-268.

Overexpression of thioredoxin h leads to enhanced activity of starch debranching enzyme (pullulanase) in barley grain.

Cho, M. J., Wong, J. H., Marx, C., Jiang, W., Lemaux, P. G. & Buchanan, B. B. (1999). Proceedings of the National Academy of Sciences, 96(25), 14641-14646.

A starch‐accumulating mutant of Arabidopsis thaliana deficient in a chloroplastic starch‐hydrolysing enzyme.

Zeeman, S. C., Northrop, F., Smith, A. M. & Rees, T. A. (1998). The Plant Journal, 15(3), 357-365.

The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm.

Kubo, A., Fujita, N., Harada, K., Matsuda, T., Satoh, H. & Nakamura, Y. (1999). Plant Physiology, 121(2), 399-410.

Enzymatic properties and regulation of ZPU1, the maize pullulanase-type starch debranching enzyme.

Wu, C., Colleoni, C., Myers, A. M. & James, M. G. (2002). Archives of Biochemistry and Biophysics, 406(1), 21-32.

The effect of storage temperature on reducing sugar concentration and the activities of three amylolytic enzymes in tubers of the cultivated potato, Solanum tuberosum L.

Cottrell, J. E., Duffus, C. M., Paterson, L., Mackay, G. R., Allison, M. J. & Bain, H. (1993). Potato Research, 36(2), 107-117.

In vitro pullulanase activity of wheat (Triticum aestivum L.) limit-dextrinase type starch debranching enzyme is modulated by redox conditions.

Repellin, A., Båga, M. & Chibbar, R. N. (2008). Journal of Cereal Science, 47(2), 302-309.

Flavobacterium frigidarium sp. nov., an aerobic, psychrophilic, xylanolytic and laminarinolytic bacterium from Antarctica.

Humphry, D. R., George, A., Black, G. W. & Cummings, S. P. (2001). International Journal of Systematic and Evolutionary Microbiology, 51(4), 1235-1243.

Expression and secretion of Bacillus polymyxa neopullulanase in Saccharomyces cerevisiae.

Yebra, M. J., Blasco, A. & Sanz, P. (1999). FEMS Microbiology Letters, 170(1), 41-49.

Protein heterogeneity of spinach pullulanase results from the coexistence of interconvertible isomeric forms of the monomeric enzyme.

Henker, A., Schindler, I., Renz, A. & Beck, E. (1998). Biochem. J, 331, 929-935.

Characterization of novel neopullulanase from Bacillus polymyxa.

Yebra, M. J., Arroyo, J., Sanz, P. & Prieto, J. A. (1997). Applied Biochemistry and Biotechnology, 68(1), 113-120.

Cloning, expression and characterization of the recombinant cold-active type-I pullulanase from Shewanella arctica.

Elleuche, S., Qoura, F. M., Lorenz, U., Rehn, T., Brueck, T. & Antranikian, G. (2015). Journal of Molecular Catalysis B: Enzymatic, 116, 70-77.

Characterization of a type I pullulanase from Anoxybacillus sp. SK3-4 reveals an unusual substrate hydrolysis.

Kahar, U. M., Ng, C. L., Chan, K. G. & Goh, K. M. (2016). Applied Microbiology and Biotechnology, 100(14), 6291–6307.
To choose a chapter, play the video and select the required chapter from the options on the video display.

Chapter 1: Principle of the Assay Procedure
Chapter 2: Substrate & Kit Description
Chapter 3: Dissolution of Azo-CM-Cellulose
Chapter 4: Precipitant Solution
Chapter 5: Preparation of Buffer Solution
Chapter 6: Assay Procedure
Chapter 7: Calculation

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.