Starch Damage Assay Kit

The Starch Damage test kit is suitable for the measurement and analysis of starch damage in cereal flours.

Image unavailable
Product Code
200 assays per kit

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

Validation of Methods

AACC Method 76-31.01


ICC Standard No. 164


RACI Standard Method

Colourimetric method for the determination of Starch Damage
in cereal flours

                                                          (fungal α-amylase)
(1) Damaged (or gelatinised) starch + H2O → maltodextrins

(2) Maltodextrins + H2O → D-glucose

                                 (glucose oxidase)
(3) D-Glucose + H2O + O2 → D-gluconate + H2O2

(4) 2H2O2 + p-hydroxybenzoic acid + 4-aminoantipyrine →
                                                                        quinoneimine + 4H2O

Kit size:                            200 assays
Method:                           Spectrophotometric at 510 nm
Total assay time:             ~ 40 min
Detection limit:                0.5-100% of sample weight
Application examples:
Cereal flours and other materials
Method recognition:    
AACC (Method 76-31.01), ICC (Standard No. 164) and RACI (Standard


  • Very cost effective
  • All reagents stable for > 2 years after preparation
  • Only enzymatic kit available
  • Very specific
  • Simple format
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing
  • Standard included

An improved enzymic method for the measurement of starch damage in wheat flour.

Gibson, T. S., Al Qalla, H. & McCleary, B. V. (1992). Journal of Cereal Science, 15(1), 15-27.

Collaborative evaluation of an enzymatic starch damage assay kit and comparison with other methods.

Gibson, T. S., Kaldor, C. J. & McCleary, B. V. (1993). Cereal Chem., 70(1), 47-51.

Measurement of total starch in cereal products by amyloglucosidase-alpha-amylase method: collaborative study.

McCleary, B. V., Gibson, T. S. & Mugford, D. C. (1997). Journal of AOAC International, 80, 571-579.

Measurement of carbohydrates in grain, feed and food.

McCleary, B. V., Charnock, S. J., Rossiter, P. C., O’Shea, M. F., Power, A. M. & Lloyd, R. M. (2006). Journal of the Science of Food and Agriculture, 86(11), 1648-1661.

Starch properties, in vitro digestibility and sensory evaluation of fresh egg pasta produced from oat, teff and wheat flour.

Hager, A. S., Czerny, M., Bez, J., Zannini, E. & Arendt, E. K. (2013). Journal of Cereal Science, 58(1), 156-163.

Effect of sorghum flour composition and particle size on quality properties of gluten-free bread.

Trappey, E. F., Khouryieh, H., Aramouni, F. & Herald, T. (2014). Food Science and Technology International, 1082013214523632.

Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours.

Hager, A. S., Wolter, A., Jacob, F., Zannini, E. & Arendt, E. K. (2012). Journal of Cereal Science, 56(2), 239-247.

Quality variations in flours used for pretzel manufacturing.

Yao, N. & Seetharaman, K. (2010). International Journal of Food Science & Technology, 45(10), 2052-2061.

Effect of corn preparation methods on dry-grind ethanol production by granular starch hydrolysis and partitioning of spent beer solids.

Lamsal, B. P., Wang, H. & Johnson, L. A. (2011). Bioresource Technology, 102(12), 6680-6686.

Flaking as a corn preparation technique for dry-grind ethanol production using raw starch hydrolysis.

Lamsal, B. P. & Johnson, L. A. (2012). Journal of Cereal Science, 56(2), 253-259.

Chemical composition and functional properties of native chestnut starch (Castanea sativa Mill).

Cruz, B. R., Abraão, A. S., Lemos, A. M. & Nunes, F. M. (2013). Carbohydrate Polymers, 94(1), 594-602.

Changes in rice with variable temperature parboiling: thermal and spectroscopic assessment.

Himmelsbach, D. S., Manful, J. T. & Coker, R. D. (2008). Cereal chemistry, 85(3), 384-390.

Determination of formulation and processing factors affecting slowly digestible starch, protein digestibility and antioxidant capacity of extruded sorghum–maize composite flour.

Licata, R., Chu, J., Wang, S., Coorey, R., James, A., Zhao, Y. & Johnson, S. (2014). International Journal of Food Science & Technology, 49(5), 1408-1419.

Analysis of starch amylolysis using plots for first-order kinetics.

Butterworth, P. J., Warren, F. J., Grassby, T., Patel, H. & Ellis, P. R. (2012). Carbohydrate Polymers, 87(3), 2189-2197.

Effect of flour properties on the quality characteristics of gluten free sugar-snap cookies.

Mancebo, C. M., Picón, J. & Gómez, M. (2015). LWT-Food Science and Technology, 64(1), 264-269.

Functional Properties of Submicron-Scale Rice Flour Produced by Wet Media Grinding.

Hossen, M. S., Sotome, I., Nanayama, K., Sasaki, T. & Okadome, H. (2015). Cereal Chemistry, 93(1), 53-57.

The effect of damaged starch on the formation of acrylamide in baked doughs.

ShuJun, W., QuanWei, X., Wei, H., MaoMao, M. & Shuo, W. (2015). Journal of Food Safety and Quality, 6(5), 1783-1789.

Physicochemical properties and in vitro digestibility of starches from field peas grown in China.

Liu, C., Wang, S., Copeland, L. & Wang, S. (2015). LWT-Food Science and Technology, 64(2), 829-836.

Characterization of starch from bamboo seeds.

Ai, Y., Gong, L., Reed, M., Huang, J., Zhang, Y. & Jane, J. L. (2016). Starch‐Stärke, 68(1-2), 131-139.

Isolation of plantain starch on a large laboratory scale.

Ramirez‐Cortes, R., Bello‐Pérez, L. A., Gonzalez‐Soto, R. A., Gutierrez‐Meraz, F. & Alvarez‐Ramirez, J. (2015). Starch‐Stärke, 68(5-6), 488-495.
To choose a chapter, play the video and select the required chapter from the options on the video display.

Chapter 1: Introduction
Chapter 2: Theory of the Analytical Procedure
Chapter 3: Test Booklet and Reagents
Chapter 4: Reagent Preparation
Chapter 5: Weighing of Samples
Chapter 6: Hydrolysis of Damaged Starch
Chapter 7: Hydrolysis of Dextrins to Glucose
Chapter 8: Glucose Determination (GOPOD Reagent)
Chapter 9: Calculation Simplified using MegaCalc

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.