Sucrose/D-Fructose/D-Glucose Assay Kit

The Sucrose/D-Fructose/D-Glucose test kit is suitable for the measurement and analysis of sucrose, D-glucose and D-fructose in plant and food products.

Extended cofactors stability. Dissolved cofactors stable for > 1 year at 4oC. 

Image unavailable
Product Code
300 assays (100 of each) per kit

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

UV-method for the determination of Sucrose, D-Fructose and
D-Glucose in foodstuffs, beverages and other materials

(1) Sucrose + H2O → D-glucose + D-fructose

(2) D-Glucose + ATP → G-6-P + ADP

(3) D-Fructose + ATP → F-6-P + ADP

      (glucose-6-phosphate dehydrogenase)
(4) G-6-P + NADP+ → gluconate-6-phosphate + NADPH + H+

    (phosphoglucose isomerase)
(5) F-6-P          →          G-6-P

Kit size:                            * 100 assays of each

The number of manual tests per kit can be doubled if all volumes are halved. 
This can be readily accommodated using the MegaQuantTM Wave
Spectrophotometer (D-MQWAVE).

Method:                           Spectrophotometric at 340 nm
Reaction time:                 ~ 20 min
Detection limit:                1.38 mg/L
Application examples:
Beer, fruit juices, soft drinks, milk, jam, honey, dietetic foods, bread,
bakery products, dairy products, candies, desserts, confectionery, sweets,
ice-cream, fruit and vegetables (e.g. potato), meat products (e.g. sausage),
condiments (e.g. ketchup and mustard), feed, tobacco, cosmetics,
pharmaceuticals, paper and other materials
Method recognition:    
Methods based on this principle have been accepted by NF, EN, NEN,


  • Very competitive price (cost per test)
  • All reagents stable for > 2 years after preparation
  • Rapid reaction
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing
  • Stabilised D-glucose / D-fructose standard solution included
  • Extended cofactors stability

Grape and wine analysis: Oenologists to exploit advanced test kits.

Charnock, S. C. & McCleary, B. V. (2005). Revue des Enology, 117, 1-5.

Megazyme “advanced” wine test kits general characteristics and validation.

Charnock, S. J., McCleary, B. V., Daverede, C. & Gallant, P. (2006). Reveue des Oenologues, 120, 1-5.

Evaluation of Type of Process on Functional Properties and on Nutritional and Anti-nutritional Composition of Yams (Dioscorea cayenensis-rotundata).

Kouassi, N. K., Nindjin, C., Tetchi, A. F. & Amani, G. N. (2010). Journal of Food Technology, 8(4), 191-199.

Submerged culture process for biomass and exopolysaccharide production by Antarctic yeast: some engineering considerations.

Vlaev, S., Rusinova-Videva, S., Pavlova, K., Kuncheva, M., Panchev, I. & Dobreva, S. (2013). Applied Microbiology and Biotechnology, 97(12), 5303-5313.

Near‐infrared reflectance calibrations for determining sucrose content in soybean breeding using artificial reference samples.

Sato, T., Zahlner, V., Berghofer, E., Lošák, T. & Vollmann, J. (2012). Plant Breeding, 131(4), 531-534.

Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus Shootmeristemless gene.

Elhiti, M., Yang, C., Chan, A., Durnin, D. C., Belmonte, M. F., Ayele, B. T., Tahir M. & Stasolla, C. (2012). Journal of Experimental Botany, 63(12), 4447-4461.

Engineering cyanobacteria to synthesize and export hydrophilic products.

Niederholtmeyer, H., Wolfstädter, B. T., Savage, D. F., Silver, P. A. & Way, J. C. (2010). Applied and Environmental Microbiology, 76(11), 3462-3466.

Variation and correlation of properties in different grades of maple syrup.

Singh, A. S., Jones, A. M. P. & Saxena, P. K. (2014). Plant Foods for Human Nutrition, 69(1), 50-56.

Spontaneous postharvest fermentation of açai (Euterpe oleracea) fruit.

Aguiar, F., Menezes, V. & Rogez, H. (2013). Postharvest Biology and Technology, 86, 294-299.

Partial Study of Yam Tuber (Dioscorea spp.) Parts during the Growth Period.

Claver Degbeu, K., N'dri, Y. D., Fabrice Tetchi, A., Nindjin, C., N'guessan Amani, G. & Bakayoko, A. (2013). Advance Journal of Food Science & Technology, 5(9), 1120-1131.

Galanthamine production by Leucojum aestivum L. shoot culture in a modified bubble column bioreactor with internal sections.

Georgiev, V., Ivanov, I., Berkov, S., Ilieva, M., Georgiev, M., Gocheva, T. & Pavlov, A. (2012). Engineering in Life Sciences, 12(5), 534-543.

Sugar accumulation in roots of two grape varieties with contrasting response to water stress.

Rogiers, S. Y., Holzapfel, B. P. & Smith, J. P. (2011). Annals of Applied Biology, 159(3), 399-413.

Carbohydrate reserve status of Malbec grapevines after several years of regulated deficit irrigation and crop load regulation.

Dayer, S., Prieto, J. A., Galat, E. & Perez Peña, J. (2013). Australian Journal of Grape and Wine Research, 19(3), 422-430.

Stem carbohydrate dynamics and expression of genes involved in fructan accumulation and remobilization during grain growth in wheat (Triticum aestivum L.) genotypes with contrasting tolerance to water stress.

Yáñez, A., Tapia, G., Guerra, F. & del Pozo, A. (2017). PloS one, 12(5), e0177667.

Different responses of stem and soil CO2 efflux to pruning in a Chinese fir (Cunninghamia lanceolata) plantation.

Yang, Q., Liu, L., Zhang, W., Xu, M. & Wang, S. (2015). Trees, 29(4), 1207-1218.

Could cider aroma modify cider mouthfeel properties?

Symoneaux, R., Guichard, H., Le Quéré, J. M., Baron, A. & Chollet, S. (2015). Food Quality and Preference, 45, 11-17.

Effect of pre-treatments on the saccharification of pineapple waste as a potential source for vinegar production.

Roda, A., De Faveri, D. M., Giacosa, S., Dordoni, R. & Lambri, M. (2016). Journal of Cleaner Production, 112, 4477-4484.

The Arabidopsis thylakoid transporter PHT4; 1 influences phosphate availability for ATP synthesis and plant growth.

Karlsson, P. M., Herdean, A., Adolfsson, L., Beebo, A., Nziengui, H., Irigoyen, S., Ünnep, R., Zsiros, O., Nagy, G,. Garab, G., Aronsson, H., Versaw, W. K. & Aronsson, H. (2015). The Plant Journal, 84(1), 99-110.

Effects of Fe deficiency on the protein profile of Brassica napus phloem sap.

Gutierrez‐Carbonell, E., Lattanzio, G., Albacete, A., Rios, J. J., Kehr, J., Abadía, A., Grusak, M. A., Abadía, J. & López‐Millán, A. F. (2015). Proteomics, 15(22), 3835-3853.

Mapping of quantitative trait loci for tuber starch and leaf sucrose contents in diploid potato.

Śliwka, J., Sołtys-Kalina, D., Szajko, K., Wasilewicz-Flis, I., Strzelczyk-Żyta, D., Zimnoch-Guzowska, E., Jakuczun, H. & Marczewski, W. (2016). Theoretical and Applied Genetics, 129(1), 131-140.

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.