Tetraacetyl-chitotetraose
CAS: 2706-65-2
Molecular Formula: C32H54N4O21
Molecular Weight: 830.4
Purity: > 95%
High purity Tetraacetyl-chitotetraose for use in research, biochemical enzyme assays and in vitro diagnostic analysis.
Prepared from chitin.

Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research.
Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., Ralet, M. C., Farkas, V., Von Schantz, L., Marcus, S. E., Andersen, M.C. F., Field, R., Ohlin, M., Knox, J. P., Clausen, M. H. & Willats, W. G. T. (2012). Journal of Biological Chemistry, 287(47), 39429-39438.
Read Abstract
Microarrays are powerful tools for high throughput analysis, and hundreds or thousands of molecular interactions can be assessed simultaneously using very small amounts of analytes. Nucleotide microarrays are well established in plant research, but carbohydrate microarrays are much less established, and one reason for this is a lack of suitable glycans with which to populate arrays. Polysaccharide microarrays are relatively easy to produce because of the ease of immobilizing large polymers noncovalently onto a variety of microarray surfaces, but they lack analytical resolution because polysaccharides often contain multiple distinct carbohydrate substructures. Microarrays of defined oligosaccharides potentially overcome this problem but are harder to produce because oligosaccharides usually require coupling prior to immobilization. We have assembled a library of well characterized plant oligosaccharides produced either by partial hydrolysis from polysaccharides or by de novo chemical synthesis. Once coupled to protein, these neoglycoconjugates are versatile reagents that can be printed as microarrays onto a variety of slide types and membranes. We show that these microarrays are suitable for the high throughput characterization of the recognition capabilities of monoclonal antibodies, carbohydrate-binding modules, and other oligosaccharide-binding proteins of biological significance and also that they have potential for the characterization of carbohydrate-active enzymes.
Heterologous expression and characterization of an N-acetyl-β-D-hexosaminidase from Lactococcus lactis ssp. lactis IL1403.
Nguyen, H. A., Nguyen, T. H., Křen, V., Eijsink, V. G. H., Haltrich, D. & Peterbauer, C. K. (2012). Journal of Agricultural and Food Chemistry, 60(12), 3275-3281.
Read Abstract
The lnbA gene of Lactococcus lactis ssp. lactis IL1403 encodes a polypeptide with similarity to lacto-N-biosidases and N-acetyl-β-D-hexosaminidases. The gene was cloned into the expression vector pET-21d and overexpressed in Escherichia coli BL21* (DE3). The recombinant purified enzyme (LnbA) was a monomer with a molecular weight of approximately 37 kDa. Studies with chromogenic substrates including p-nitrophenyl N-acetyl-β-D-glucosamine (pNP-GlcNAc) and p-nitrophenyl N-acetyl-β-D-galactosamine (pNP-GalNAc) showed that the enzyme had both N-acetyl-β-D-glucosaminidase and N-acetyl-β-D-galactosaminidase activity, thus indicating that the enzyme is an N-acetyl-β-D-hexosaminidase. Km and Kcat for pNP-GlcNAc were 2.56 mM and 26.7 s-1, respectively, whereas kinetic parameters for pNP-GalNAc could not be determined due to the Km being very high (>10 mM). The optimal temperature and pH of the enzyme were 37°C and 5.5, respectively, for both substrates. The half-life of activity at 37°C and pH 6.0 was 53 h, but activity was completely abolished after 30 min at 50°C, meaning that the enzyme has relatively low temperature stability. The enzyme was stable in the pH 5.5–8 range and was unstable at pH below 5.5. Studies with natural substrates showed hydrolytic activity on chito-oligosaccharides but not on colloidal chitin or chitosan. Transglycosylation products were not detected. In all, the data suggest that LnbA’s role may be to degrade chito-oligosaccharides that are produced by the previously described chitinolytic system of L. lactis.
Tagging saccharides for signal enhancement in mass spectrometric analysis.
Chang, Y. L., Liao, S. K. S., Chen, Y. C., Hung, W. T., Yu, H. M., Yang, W. B., Fang, J. M., Chen, C. H. & Lee, Y. C. (2011). Journal of mass spectrometry, 46(3), 247-255.
Read Abstract
MALDI-MS provides a rapid and sensitive analysis of large biomolecules such as proteins and nucleic acids. However, oligo- and polysaccharides are less sensitive in MS analysis partly due to their neutral and hydrophilic nature to cause low ionization efficiency. In this study, four types of oligosaccharides including aldoses, aminoaldoses, alduronic acids and α-keto acids were modified by appropriate tags at the reducing termini to improve their ionization efficiency. Bradykinin (BK), a vasoactive nonapeptide (RPPGFSPFR), containing two arginine and two phenylalanine residues turned out to be an excellent MS signal enhancer for maltoheptaose, GlcNAc oligomers and oligogalacturonic acids. In the MALDI-TOF-MS analysis using 2,5-dihydroxybenzoic acid (2,5-DHB) as the matrix, the GalA4–BK and GalA5–BK conjugates prepared by reductive amination showed the detection limit at 0.1 fmol, i.e. ∼800-fold enhancement over the unmodified pentagalacturonic acids. The remarkable MS enhancement was attributable to the synergistic effect of the basic arginine residues for high proton affinity and the hydrophobic property phenylalanine residues for facile ionization. A tetrapeptide GFGR(OMe) and an arginine linked phenylenediamine (H2N)2Ph-R(OMe) were thus designed to act as potent tags of oligosaccharides in MS analysis. Interestingly, concurrent condensation and lactonization of α2,8-linked tetrasialic acid (SA4) was carried out with (H2N)2Ph-R(OMe) to obtain a quinoxalinone derivative, which showed > 200-fold enhancement over unmodified SA4 in the MALDI-TOF-MS analysis.
Structure‐guided analysis of catalytic specificity of the abundantly secreted chitosanase SACTE_5457 from Streptomyces sp. SirexAA‐E.
Takasuka, T. E., Bianchetti, C. M., Tobimatsu, Y., Bergeman, L. F., Ralph, J. & Fox, B. G. (2014). Proteins: Structure, Function, and Bioinformatics, 82(7), 1245-1257.
Read Abstract
SACTE_5457 is secreted by Streptomyces sp. SirexAA-E, a highly cellulolytic actinobacterium isolated from a symbiotic community composed of insects, fungi, and bacteria. Here we report the 1.84 Å resolution crystal structure and functional characterization of SACTE_5457. This enzyme is a member of the glycosyl hydrolase family 46 and is composed of two α-helical domains that are connected by an α-helical linker. The catalytic residues (Glu74 and Asp92) are separated by 10.3 Å, matching the distance predicted for an inverting hydrolysis reaction. Normal mode analysis suggests that the connecting α-helix is flexible and allows the domain motion needed to place active site residues into an appropriate configuration for catalysis. SACTE_5457 does not react with chitin, but hydrolyzes chitosan substrates with an ~4-fold improvement in kcat/KM as the percentage of acetylation and the molecular weights decrease. Analysis of the time dependence of product formation shows that oligosaccharides with degree of polymerization <4 are not hydrolyzed. By combining the results of substrate docking to the X-ray structure and end-product analysis, we deduce that SACTE_5457 preferentially binds substrates spanning the −2 to +2 sugar binding subsites, and that steric hindrance prevents binding of N-acetyl-D-glucosamine in the +2 subsite and may weakly interfere with binding of N-acetyl-D-glucosamine in the +1 subsites. A proposal for how these constraints account for the observed product distributions is provided.
Structure and function of a CE4 deacetylase isolated from a marine environment.
Tuveng, T. R., Rothweiler, U., Udatha, G., Vaaje-Kolstad, G., Smalås, A. & Eijsink, V. G. (2017). PloS One, 12(11), e0187544.
Read Abstract
Chitin, a polymer of β(1–4)-linked N-acetylglucosamine found in e.g. arthropods, is a valuable resource that may be used to produce chitosan and chitooligosaccharides, two compounds with considerable industrial and biomedical potential. Deacetylating enzymes may be used to tailor the properties of chitin and its derived products. Here, we describe a novel CE4 enzyme originating from a marine Arthrobacter species (ArCE4A). Crystal structures of this novel deacetylase were determined, with and without bound chitobiose [(GlcNAc)2], and refined to 2.1 Å and 1.6 Å, respectively. In-depth biochemical characterization showed that ArCE4A has broad substrate specificity, with higher activity against longer oligosaccharides. Mass spectrometry-based sequencing of reaction products generated from a fully acetylated pentamer showed that internal sugars are more prone to deacetylation than the ends. These enzyme properties are discussed in the light of the structure of the enzyme-ligand complex, which adds valuable information to our still rather limited knowledge on enzyme-substrate interactions in the CE4 family.