Total Starch Assay Kit (AA/AMG) 

The Total Starch (AA/AMG) test kit is used for the measurement and analysis of total starch in cereal flours and food products.  This kit now contains an improved α-amylase that allows the amylase incubations to be performed at pH 5.0 (as well as pH 7.0). 

Data calculators are located in the Technical Resources tab.

Image unavailable
Product Code
Content/Size
Stock
Price
Qty
K-TSTA-50A
50 assays
$198.00
K-TSTA-100A
100 assays
$318.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

Validation of Methods
Certification

AACC Method 76-13.01

Certification

AOAC Method 996.11

Certification

ICC Standard No. 168

Certification

RACI Standard Method

Colourimetric method for the determination of Total Starch in
cereal products, feeds, foodstuffs and other materials

Principle:
                      (α-amylase, 100°C ± DMSO)
(1) Starch granules + H2O → maltodextrins

                        (amyloglucosidase)
(2) Maltodextrins + H2O → D-glucose

                                 (glucose oxidase)
(3) D-Glucose + H2O + O2 → D-gluconate + H2O2

                                                                                   (peroxidase)
(4) 2H2O2 + p-hydroxybenzoic acid + 4-aminoantipyrine →
                                                                       quinoneimine + 4H2O

Kit size:                               50/100 assays
Method:                               Spectrophotometric at 510 nm
Total assay time:                ~ 90 min
Detection limit:                   1-100% of sample weight
Application examples:
Cereal flours, food products and other materials
Method recognition:    
AOAC (Method 996.11), AACC (Method 76-13.01), ICC (Standard Method
No. 168) and RACI (Standard Method)

Advantages

  • Very competitive price (cost per test)
     
  • All reagents stable for > 12 months after preparation
     
  • Simple format
     
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing
     
  • Standard included

Quantitative measurement of total starch in cereal flours and products.

McCleary, B. V., Solah, V. & Gibson, T. S. (1994). Journal of Cereal Science, 20(1), 51-58.

Total starch measurement in cereal products: interlaboratory evaluation of a rapid enzymic test procedure.

McCleary, B. V., Gibson, T. S., Solah, V. & Mugford, D. C. (1994). Cereal Chemistry, 71(5), 501-505.

Collaborative evaluation of a simplified assay for total starch in cereal products (AACC Method 76-13).

McCleary, B. V., Gibson, T. S. & Mugford, D. C. (1997). Cereal Foods World, 42, 476-480.

Measurement of total starch in cereal products by amyloglucosidase-alpha-amylase method: collaborative study.

McCleary, B. V., Gibson, T. S. & Mugford, D. C. (1997). Journal of AOAC International, 80, 571-579.

Measurement of carbohydrates in grain, feed and food.

McCleary, B. V., Charnock, S. J., Rossiter, P. C., O’Shea, M. F., Power, A. M. & Lloyd, R. M. (2006). Journal of the Science of Food and Agriculture, 86(11), 1648-1661.

Sourdough bread: Starch digestibility and postprandial glycemic response.

Scazzina, F., Del Rio, D., Pellegrini, N. & Brighenti, F. (2009). Journal of Cereal Science, 49(3), 419-421.

Strain, biochemistry, and cultivation-dependent measurement variability of algal biomass composition.

Laurens, L. M., Van Wychen, S., McAllister, J. P., Arrowsmith, S., Dempster, T. A., McGowen, J. & Pienkos, P. T. (2014). Analytical Biochemistry, 452, 86-95.

Production of high-starch duckweed and its conversion to bioethanol.

Xu, J., Cui, W., Cheng, J. J. & Stomp, A. M. (2011). Biosysystems engineering, 110(2), 67-72.

High hydrostatic pressure influences antinutritional factors and in vitro protein digestibility of split peas and whole white beans.

Linsberger-Martin, G., Weiglhofer, K., Thi Phuong, T. P. & Berghofer, E. (2013). LWT-Food Science and Technology, 51(1), 331-336.

Effect of supplementary concentrate type on nitrogen partitioning in early lactation dairy cows offered perennial ryegrass-based pasture.

Whelan, S. J., Pierce, K. M., McCarney, C., Flynn, B. & Mulligan, F. J. (2012). Journal of Dairy Science, 95(8), 4468-4477.

Brewer’s spent grain as a functional ingredient for breadsticks.

Ktenioudaki, A., Chaurin, V., Reis, S. F. & Gallagher, E. (2012). International Journal of Food Science & Technology, 47(8), 1765-1771.

Effect of forage source and a supplementary methionine hydroxy analog on nitrogen balance in lactating dairy cows offered a low crude protein diet.

Whelan, S. J., Mulligan, F. J., Flynn, B., McCarney, C. & Pierce, K. M. (2011). Journal of Dairy Science, 94(10), 5080-5089.

Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed).

Wang, W. & Messing, J. (2012). BMC plant biology, 12(1), 5.

Buckwheat starch: structure, functionality and enzyme in vitro susceptibility upon the roasting process.

Christa, K., Soral-Smietana, M. & Lewandowicz, G. (2009). International Journal of Food Sciences and Nutrition, 60(s4), 140-154.

Deficiency of maize starch-branching enzyme i results in altered starch fine structure, decreased digestibility and reduced coleoptile growth during germination.

Xia, H., Yandeau-Nelson, M., Thompson, D. B. & Guiltinan, M. J. (2011). BMC Plant Biology, 11(1), 95-107.

Profiling brewers' spent grain for composition and microbial ecology at the site of production.

Robertson, J. A., I'Anson, K. J. A., Treimo, J., Faulds, C. B., Brocklehurst, T. F., Eijsink, V. G. H. & Waldron, K. W. (2010). LWT-Food Science and Technology, 43(6), 890-896.

Enzymatic solubilization of brewers’ spent grain by combined action of carbohydrases and peptidases.

Treimo, J., Westereng, B., Horn, S. J., Forssell, P., Robertson, J. A., Faulds, C. B., Waldron K. W., Buchert J. & Eijsink, V. G. (2009). Journal of Agricultural and Food Chemistry, 57(8), 3316-3324.

Effect of sorghum flour addition on in vitro starch digestibility, cooking quality, and consumer acceptability of durum wheat pasta.

Khan, I., Yousif, A. M., Johnson, S. K. & Gamlath, S. (2014). Journal of Food Science, 79(8), S1560-S1567.

Physicochemical properties of starch from sago (metroxylon sagu) palm grown in mineral soil at different growth stages.

Uthumporn, U., Wahidah, N. & Karim, A. A. (2014). IOP Conference Series: Materials Science and Engineering (Vol. 62, No. 1, p. 012026). IOP Publishing.
To choose a chapter, play the video and select the required chapter from the options on the video display.

Chapter 1: Introduction
Chapter 2: Theory of the Analytical Procedure
Chapter 3: Kit Contents
Chapter 4: Reagent Preparation
Chapter 5: Milling of Samples
Chapter 6: Weighing Samples
Chapter 7: Determination of Starch in Cereal & Food Products that do not contain Resistant Starch
Chapter 8: Determination of Starch in Cereal & Food Products that do contain Resistant Starch
Chapter 9: Calculations

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.

FAQs