CAS: 6860-47-5
Molecular Formula: C10H18O9
Molecular Weight: 282.2
Purity: > 90%

High purity Xylobiose for use in research, biochemical enzyme assays and in vitro diagnostic analysis. 

Product Code
50 mg

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

A Comparison of Polysaccharide Substrates and Reducing Sugar Methods for the Measurement of endo-1,4-β-Xylanase

McCleary, B. V. & McGeough, P. (2015). Appl. Biochem. Biotechnol., 177(5), 1152-1163.

Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research.

Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., Ralet, M. C., Farkas, V., Von Schantz, L., Marcus, S. E., Andersen, M.C. F., Field, R., Ohlin, M., Knox, J. P., Clausen, M. H. & Willats, W. G. T. (2012). Journal of Biological Chemistry, 287(47), 39429-39438.

Modulation of cellulosome composition in Clostridium cellulolyticum: Adaptation to the polysaccharide environment revealed by proteomic and carbohydrate‐active enzyme analyses.

Blouzard, J. C., Coutinho, P. M., Fierobe, H. P., Henrissat, B., Lignon, S., Tardif, C., Pages, S. & de Philip, P. (2010). Proteomics, 10(3), 541-554.

Identification and characterization of plant cell wall degrading enzymes from three glycoside hydrolase families in the cerambycid beetle Apriona japonica.

Pauchet, Y., Kirsch, R., Giraud, S., Vogel, H. & Heckel, D. G. (2014). Insect Biochemistry and Molecular Biology, 49, 1-13.

Comprehensive multidetector HPSEC study on solution properties of cereal arabinoxylans in aqueous and DMSO solutions.

Pitkänen, L., Virkki, L., Tenkanen, M. & Tuomainen, P. (2009). Biomacromolecules, 10(7), 1962-1969.

Mode of action of glycoside hydrolase family 5 glucuronoxylan xylanohydrolase from Erwinia chrysanthemi.

Vršanská, M., Kolenová, K., Puchart, V. & Biely, P. (2007). FEBS Journal, 274(7), 1666-1677.

Activity of an Aspergillus terreus α-arabinofuranosidase on phenolic-substituted oligosaccharides.

Luonteri, E., Kroon, P. A., Tenkanen, M., Teleman, A. & Williamson, G. (1999). Journal of Biotechnology, 67(1), 41-48.

Production of xylobiose from the autohydrolysis explosion liquor of corncob using Thermotoga maritima ylanase B (XynB) immobilized on nickel-chelated Eupergit C.

Tan, S. S., Li, D. Y., Jiang, Z. Q., Zhu, Y. P., Shi, B. & Li, L. T. (2008). Bioresource Technology, 99(1), 200-204.

Evidence for the presence of arabinoxylan hydrolysing enzymes in European wheat flours.

Cleemput, G., Bleukx, W., Van Oort, M., Hessing, M. & Delcour, J. A. (1995). Journal of Cereal Science, 22(2), 139-145.

Extractive bioconversion of xylan for production of xylobiose and xylotriose using a PEG6000/sodium citrate aqueous two-phase system.

Li, X., Lian, Z., Dong, B., Xu, Y., Yong, Q. & Yu, S. (2011). Korean Journal of Chemical Engineering, 28(9), 1897-1901.

Purification and characterization of Thermobifida fusca xylanase 10B.

Kim, J. H., Irwin, D. & Wilson, D. B. (2004). Canadian Journal of Microbiology, 50(10), 835-843.

Xylanase, β-glucanase, and other side enzymatic activities have greater effects on the viscosity of several feedstuffs than xylanase and β-glucanase used alone or in combination.

Mathlouthi, N., Saulnier, L., Quemener, B. & Larbier, M. (2002). Journal of Agricultural and Food Chemistry, 50(18), 5121-5127.

In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria.

Crittenden, R., Karppinen, S., Ojanen, S., Tenkanen, M., Fagerström, R., Mättö, J., Saarela, M., Mattila-Sandholm, T. & Poutanen, K. (2002). Journal of the Science of Food and Agriculture, 82(8), 781-789.

HPAEC-PAD for oligosaccharide analysis—novel insights into analyte sensitivity and response stability.

Mechelke, M., Herlet, J., Benz, J. P., Schwarz, W. H., Zverlov, V. V., Liebl, W. & Kornberger, P. (2017). Analytical and Bioanalytical Chemistry, 1-13.

Structural insights into the inhibition of cellobiohydrolase Cel7A by xylo‐oligosaccharides.

Momeni, M. H., Ubhayasekera, W., Sandgren, M., Ståhlberg, J. & Hansson, H. (2015). The FEBS journal, 282(11), 2167-2177.

Separation of xylose oligomers from autohydrolyzed Miscanthus × giganteus using centrifugal partition chromatography.

Chen, M. H., Rajan, K., Carrier, D. J. & Singh, V. (2015). Food and Bioproducts Processing, 95, 125-132.

Multi-component thermostable cellulolytic enzyme production by Aspergillus niger HN-1 using pea pod waste: Appraisal of hydrolytic potential with lignocellulosic biomass.

Sharma, R., Rawat, R., Bhogal, R. S. & Oberoi, H. S. (2015). Process Biochemistry, 50(5), 696-704.

Isolation and characterization of unhydrolyzed oligosaccharides from switchgrass (Panicum virgatum, L.) xylan after exhaustive enzymatic treatment with commercial enzyme preparations.

Bowman, M. J., Dien, B. S., Vermillion, K. E. & Mertens, J. A. (2015). Carbohydrate research, 407, 42-50.

Systematic evaluation of the degraded products evolved from the hydrothermal pretreatment of sweet sorghum stems.

Sun, S., Wen, J., Sun, S. & Sun, R. C. (2015). Biotechnology for biofuels, 8(1), 37.

Role of hemicellulases in production of fermentable sugars from corn stover.

Xin, D., Sun, Z., Viikari, L. & Zhang, J. (2015). Industrial Crops and Products, 74, 209-217.

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.