Xylopentaose

CAS: 49694-20-4
Molecular Formula: C25H42O21
Molecular Weight: 678.6
Purity: > 95%

High purity Xylopentaose for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

Product Code
Content/size
Stock
Price
Qty
O-XPE
10 mg
$161.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

A Comparison of Polysaccharide Substrates and Reducing Sugar Methods for the Measurement of endo-1,4-β-Xylanase

McCleary, B. V. & McGeough, P. (2015). Appl. Biochem. Biotechnol., 177(5), 1152-1163.

Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research.

Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., Ralet, M. C., Farkas, V., Von Schantz, L., Marcus, S. E., Andersen, M.C. F., Field, R., Ohlin, M., Knox, J. P., Clausen, M. H. & Willats, W. G. T. (2012). Journal of Biological Chemistry, 287(47), 39429-39438.

Novel surface-based methodologies for investigating GH11 xylanase–lignin derivative interactions.

Zeder-Lutz, G., Renau-Ferrer, S., Aguié-Béghin, V., Rakotoarivonina, H., Chabbert, B., Altschuh, D. & Rémond, C. (2013). Analyst, 138(22), 6889-6899.

Mode of action of glycoside hydrolase family 5 glucuronoxylan xylanohydrolase from Erwinia chrysanthemi.

Vršanská, M., Kolenová, K., Puchart, V. & Biely, P. (2007). FEBS Journal, 274(7), 1666-1677.

Substrate specificity in glycoside hydrolase family 10. Tyrosine 87 and leucine 314 play a pivotal role in discriminating between glucose and xylose binding in the proximal active site of pseudomonas cellulosa xylanase 10A.

Andrews, S. R., Charnock, S. J., Lakey, J. H., Davies, G. J., Claeyssens, M., Nerinckx, W., Underwood, M., Sinnott, M. L., Warren, R. A. J. & Gilbert, H. J. (2000). Journal of Biological Chemistry, 275(30), 23027-23033.

In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria.

Crittenden, R., Karppinen, S., Ojanen, S., Tenkanen, M., Fagerström, R., Mättö, J., Saarela, M., Mattila-Sandholm, T. & Poutanen, K. (2002). Journal of the Science of Food and Agriculture, 82(8), 781-789.

Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-0.

Bataillon, M., Nunes Cardinali, A. P., Castillon, N. & Duchiron, F. (2000). Enzyme and Microbial Technology, 26(2), 187-192.

Novel bifunctional α-L-arabinofuranosidase/xylobiohydrolase (ABF3) from Penicillium purpurogenum.

Ravanal, M. C., Callegari, E. & Eyzaguirre, J. (2010). Applied and Environmental Microbiology, 76(15), 5247-5253.

Novel xylan-binding properties of an engineered family 4 carbohydrate-binding module.

Gunnarsson, L. C., Montanier, C., Tunnicliffe, R. B., Williamson, M. P., Gilbert, H. J., Nordberg, K. E. & Ohlin, M. (2007). Biochem. J, 406(2), 209-214.

The xynC gene from Fibrobacter succinogenes S85 codes for a xylanase with two similar catalytic domains.

Paradis, F. W., Zhu, H., Krell, P. J., Phillips, J. P. & Forsberg, C. W. (1993). Journal of Bacteriology, 175(23), 7666-7672.

Identification of two acidic residues involved in the catalysis of xylanase A from Streptomyces lividans.

Moreau, A., Roberge, M., Manin, C., Shareck, F., Kluepfel, D. & Morosoli, R. (1994). Biochem. J, 302, 291-295.

Penicillium purpurogenum produces two GH family 43 enzymes with β-xylosidase activity, one monofunctional and the other bifunctional: Biochemical and structural analyses explain the difference.

Ravanal, M. C., Alegría-Arcos, M., Gonzalez-Nilo, F. D. & Eyzaguirre, J. (2013). Archives of Biochemistry and Biophysics, 540(1), 117-124.

Xylan-degrading enzymes from Aspergillus terreus: Physicochemical features and functional studies on hydrolysis of cellulose pulp.

de Souza Moreira, L. R., Álvares, A. D. C. M., da Silva Jr, F. G., de Freitas, S. M. & Ferreira Filho, E. X. (2015). Carbohydrate polymers, 134, 700-708.

Enzymatic hydrolysis of hemicelluloses from Miscanthus to monosaccharides or xylo-oligosaccharides by recombinant hemicellulases.

Li, H., Xue, Y., Wu, J., Wu, H., Qin, G., Li, C., Ding, J., Liu, J., Gan, L. & Long, M. (2016). Industrial Crops and Products, 79, 170-179.

Systematic evaluation of the degraded products evolved from the hydrothermal pretreatment of sweet sorghum stems.

Sun, S., Wen, J., Sun, S. & Sun, R. C. (2015). Biotechnology for biofuels, 8(1), 37.

Isolation and divalent-metal activation of a β-xylosidase, RUM630-BX.

Jordan, D. B., Braker, J. D., Wagschal, K., Stoller, J. R. & Lee, C. C. (2016). Enzyme and microbial technology, 82, 158-163.

Properties of an alkali-thermo stable xylanase from Geobacillus thermodenitrificans A333 and applicability in xylooligosaccharides generation.

Marcolongo, L., La Cara, F., Morana, A., Di Salle, A., Del Monaco, G., Paixão, S. M., Alves, L. & Ionata, E. (2015). World Journal of Microbiology and Biotechnology, 31(4), 633-648.

Structural insights into the inhibition of cellobiohydrolase Cel7A by xylo‐oligosaccharides.

Momeni, M. H., Ubhayasekera, W., Sandgren, M., Ståhlberg, J. & Hansson, H. (2015). The FEBS journal, 282(11), 2167-2177.

An immobilized bifunctional xylanase on carbon-coated chitosan nanoparticles with a potential application in xylan-rich biomass bioconversion.

Liu, M. Q., Huo, W. K., Xu, X. & Jin, D. F. (2015). Journal of Molecular Catalysis B: Enzymatic, 120, 119-126.

Separation of xylose oligomers from autohydrolyzed Miscanthus × giganteus using centrifugal partition chromatography.

Chen, M. H., Rajan, K., Carrier, D. J. & Singh, V. (2015). Food and Bioproducts Processing, 95, 125-132.