CAS: 22416-58-6
Molecular Formula: C20H34O17
Molecular Weight: 546.5
Purity: > 95%

High purity Xylotetraose for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

Product Code
30 mg

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

A Comparison of Polysaccharide Substrates and Reducing Sugar Methods for the Measurement of endo-1,4-β-Xylanase

McCleary, B. V. & McGeough, P. (2015). Appl. Biochem. Biotechnol., 177(5), 1152-1163.

Versatile high resolution oligosaccharide microarrays for plant glycobiology and cell wall research.

Pedersen, H. L., Fangel, J. U., McCleary, B., Ruzanski, C., Rydahl, M. G., Ralet, M. C., Farkas, V., Von Schantz, L., Marcus, S. E., Andersen, M.C. F., Field, R., Ohlin, M., Knox, J. P., Clausen, M. H. & Willats, W. G. T. (2012). Journal of Biological Chemistry, 287(47), 39429-39438.

Chromatographic determination of 1,4-β-xylooligosaccharides of different chain lengths to follow xylan deconstruction in biomass conversion.

Li, H., Qing, Q., Kumar, R. & Wyman, C. E. (2013). Journal of Industrial Microbiology & Biotechnology, 40(6), 551-559.

Mode of action of glycoside hydrolase family 5 glucuronoxylan xylanohydrolase from Erwinia chrysanthemi.

Vršanská, M., Kolenová, K., Puchart, V. & Biely, P. (2007). FEBS Journal, 274(7), 1666-1677.

Cellulose microfibril angles and cell-wall polymers in different wood types of Pinus radiata.

Brennan, M., McLean, J. P., Altaner, C. M., Ralph, J. & Harris, P. J. (2012). Cellulose, 19(4), 1385-1404.

Xylo-oligosaccharides are competitive inhibitors of cellobiohydrolase I from Thermoascus aurantiacus.

Zhang, J. & Viikari, L. (2012). Bioresource Technology, 117, 286-291.

Cloning, expression and characterization of a glycoside hydrolase family 39 xylosidase from Bacillus halodurans C-125.

Wagschal, K., Franqui-Espiet, D., Lee, C. C., Robertson, G. H. & Wong, D. W. (2008). Biotechnology for Fuels and Chemicals, 146(1-3), 69-78.

Purification and characterization of a thermophilic xylanase from the brown-rot fungus Gloeophyllum trabeum.

Ritschkoff, A. C., Buchert, J. & Viikari, L. (1994). Journal of Biotechnology, 32(1), 67-74.

Purification and characterization of a neutral endoxylanase from Aspergillus nidulans.

Fernández-Espinar, M. T., Piñaga, F., Sanz, P., Ramón, D. & Vallés, S. (1993). FEMS Microbiology Letters, 113(2), 223-228.

Inverting character of family GH115 α-glucuronidases.

Kolenová, K., Ryabova, O., Vršanská, M. & Biely, P. (2010). FEBS Letters, 584(18), 4063-4068.

Crystallographic analysis shows substrate binding at the -3 to+ 1 active-site subsites and at the surface of glycoside hydrolase family 11 endo-1,4-β-xylanases.

Vandermarliere, E., Bourgois, T. M., Rombouts, S., Van Campenhout, S., Volckaert, G., Strelkov, S. V., Delcour, J. A., Rabijns, A. & Courtin, C. (2008). Biochem. J, 410, 71-79.

Purification and regulation of the synthesis of a β-xylosidase from Aspergillus nidulans.

Kumar, S. & Ramón, D. (1996). FEMS Microbiology Letters, 135(2‐3), 287-293.

Preparation of arabinoxylobiose from rye xylan using family 10 Aspergillus aculeatus endo-1, 4-β-D-xylanase.

Rantanen, H., Virkki, L., Tuomainen, P., Kabel, M., Schols, H. & Tenkanen, M. (2007). Carbohydrate Polymers, 68(2), 350-359.

Separation of xylose oligomers from autohydrolyzed Miscanthus × giganteus using centrifugal partition chromatography.

Chen, M. H., Rajan, K., Carrier, D. J. & Singh, V. (2015). Food and Bioproducts Processing, 95, 125-132.

Cloning, expression and characterization of β-xylosidase from Aspergillus niger ASKU28.

Choengpanya, K., Arthornthurasuk, S., Wattana-amorn, P., Huang, W. T., Plengmuankhae, W., Li, Y. K. & Kongsaeree, P. T. (2015). Protein expression and purification, 115, 132-140.

Characterization of a novel pH-stable GH3 β-xylosidase from Talaromyces amestolkiae: An enzyme displaying regioselective transxylosylation.

Nieto-Domínguez, M., de Eugenio, L. I., Barriuso, J., Prieto, A., de Toro, B. F., Canales-Mayordomo, Á. & Martínez, M. J. (2015). Applied and Environmental Microbiology, AEM-01744.

Structural insights into the inhibition of cellobiohydrolase Cel7A by xylo‐oligosaccharides.

Momeni, M. H., Ubhayasekera, W., Sandgren, M., Ståhlberg, J. & Hansson, H. (2015). The FEBS journal, 282(11), 2167-2177.

An immobilized bifunctional xylanase on carbon-coated chitosan nanoparticles with a potential application in xylan-rich biomass bioconversion.

Liu, M. Q., Huo, W. K., Xu, X. & Jin, D. F. (2015). Journal of Molecular Catalysis B: Enzymatic, 120, 119-126.

Systematic evaluation of the degraded products evolved from the hydrothermal pretreatment of sweet sorghum stems.

Sun, S., Wen, J., Sun, S. & Sun, R. C. (2015). Biotechnology for biofuels, 8(1), 37.

Role of hemicellulases in production of fermentable sugars from corn stover.

Xin, D., Sun, Z., Viikari, L. & Zhang, J. (2015). Industrial Crops and Products, 74, 209-217.

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.