Enzymatic Yeast β-Glucan Assay Kit

Enzymatic Yeast Beta-Glucan test kit, an enzymatic procedure for the measurement and analysis of 1,3:1,6-β-glucan in yeast. Also measures 1,3-β-glucan.

Image unavailable
Product Code
Content/size
Stock
Price
Qty
K-EBHLG
50 assays per kit
$288.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

Colourimetric method for the enzymatic determination of
yeast β-Glucan and also (1-3)-β Glucans

Principle:
                                                     (KOH, 4°C, 30 min)
(1) 1,3:1,6-β-Glucan + 1,3-β-glucan + H2O → soluble glucan

                      (glucazyme, 40°C, 16 h)
(2) Soluble glucan + H2O → D-glucose

                            (glucose oxidase)
(3) D-Glucose + H2O + O2 → D-gluconate + H2O2

                                                                                  (peroxidase)
(4) 2H2O2 + p-hydroxybenzoic acid + 4-aminoantipyrine →
                                                                        quinoneimine + 4H2O

Kit size:                            50 assays
Method:                            Spectrophotometric at 510 nm
Reaction time:                  ~ 100 min
Detection limit:                 1-100% of sample weight
Application examples:
Yeast preparations and other materials
Method recognition:       Novel method

Advantages

  • Very competitive price (cost per test)
     
  • All reagents stable for > 12 months after preparation
     
  • Mega-Calc™ software tool is available from our website for hassle-free raw data processing
     
  • Standard included

In Vitro potential antioxidant activity of (1→ 3),(1→ 6)-β-D-glucan and protein fractions from Saccharomyces cerevisiae cell walls.

Jaehrig, S. C., Rohn, S., Kroh, L. W., Fleischer, L. G. & Kurz, T. (2007). Journal of Agricultural and Food Chemistry, 55(12), 4710-4716.

Triggering Dectin-1-Pathway Alone Is Not Sufficient to Induce Cytokine Production by Murine Macrophages.

Walachowski, S., Tabouret, G. & Foucras, G. (2016). PloS one, 11(2), e0148464.

Quantification of 1,3-β-D-glucan from yeast added as a functional ingredient to bread.

Rieder, A., Ballance, S., Böcker, U. & Knutsen, S. (2017). Carbohydrate Polymers, 181, 34-42.

Isolation of Functional Components β-Glucan and γ-Amino Butyric Acid from Raw and Germinated Barnyard Millet (Echinochloa frumentaceae) and their Characterization.

Sharma, S., Saxena, D. C. & Riar, C. S. (2016). Plant Foods for Human Nutrition, 71(3), 231-238.

Germination and microwave processing of barley ( Hordeum vulgare L) changes the structural and physicochemical properties of β-D-glucan & enhances its antioxidant potential.

Ahmad, M., Gani, A., Shah, A., Gani, A. & Masoodi, F. A. (2016). Carbohydrate Polymers, 153, 696-702.

Application of different methods for the extraction of yeast β-glucan.

Varelas, V., Tataridis, P., Liouni, M. & Nerantzis, E. T. (2016). E-Journal of Science & Technology, 11(1).

Dietary supplementation of Thai black rice bran extract and yeast beta-glucan protects the dextran sodium sulphate mediated colitis induced rat.

Pengkumsri, N., Sivamaruthi, B. S., Sirilun, S., Suwannalert, P., Rodboon, T., Prasitpuriprecha, C., Peerajan, S., Butrungrod, W. & Chaiyasut, C. (2017). RSC Advances, 7(1), 396-402.

Optimization of extraction conditions of barley β-glucan by oxidation with hydrogen peroxide and heat treatment.

Lee, S. H., Jang, G. Y., Kim, M. Y., Hwang, I. G., Kim, H. Y., Woo, K. S., Lee, M. J., Kim, T. J., Lee, J. & Jeong, H. S. (2015). Journal of Cereal Science, 65, 147-153.

Subcritical Water Extraction of Polysaccharides Using a Semi-Batch Extractor.

Kodama, S., Shoda, T., Wahyudiono, W., Machmudah, S., Kanda, H. & Goto, M. (2015). Modern Applied Science, 9(7), 220.

Physicochemical Properties of β-Glucan from Acid Hydrolyzed Barley.

Lee, S. H., Jang, G. Y., Hwang, I. G., Kim, H. Y., Woo, K. S., Kim, K. J., Lee, M. J., Kim, T. J., Lee, J., Jeong, H. S. & Jeong, H. S. (2015). Preventive Nutrition and Food Science, 20(2), 110.

Production of Endopolysaccharides from Malaysia’s Local Mushrooms in Air-Lift Bioreactor.

Mohamad, S. A., Awang, M. R., Ibrahim, R., Keong, C. Y., Hamzah, M. Y., Rashid, R. A., Hussein, S., Rahim, K. A., Daud, F., Hamid, A. A. & Yusoff, W. M. W. (2015). Advances in Bioscience and Biotechnology, 6(07), 456.

Determination of lovastatin, β-glucan, total polyphenols, and antioxidant activity in raw and processed oyster culinary-medicinal mushroom, Pleurotus ostreatus (higher Basidiomycetes).

Lam, Y. S. & Okello, E. J. (2015). International Journal of Medicinal Mushrooms, 17(2).

Freeze‐Thaw Treatment in 2% w/w NaOH‐6 M Urea Enhanced Extraction of β-(1, 3; 1, 4)‐Glucan from Corn Pericarp.

Yoshida, T., Honda, Y., Tujimoto, T., Uyama, H., & Azuma, J. I. (2015). Macromolecular Symposia, 353(1), 205-211.

Ultrasound assisted extraction of polysaccharides from mushroom by-products.

Aguiló-Aguayo, I., Walton, J., Viñas, I. & Tiwari, B. K. (2017). LWT-Food Science and Technology, 77, 92-99.

Cytotoxic and Antimicrobial Activities of Cantharellus cibarius Fr.(Cantarellaceae).

Kolundžić, M., Stanojković, T., Radović, J., Tačić, A., Dodevska, M., Milenković, M., Sisto, F., Masia, C., Farronato, G., Nikolić, V. & Kundaković, T. (2017). Journal of Medicinal Food, 20(8), 790-796.

Hulless barley as a promising source to improve the nutritional quality of wheat products.

Narwal, S., Kumar, D., Sheoran, S., Verma, R. P. S. & Gupta, R. K. Journal of Food Science and Technology, 54(9), 2638-2644.

Fortification of Wheat Bread with Agroindustry By‐Products: Statistical Methods for Sensory Preference Evaluation and Correlation with Color and Crumb Structure.

Martins, Z. E., Pinho, O. & Ferreira, I. M. P. L. V. O. (2017). Journal of Food Science, 82(9), 2183-2191.

Analysis of Antioxidant and Anti-Inflammatory Activities of Solvent Fractions from Rhynchosia nulubilis Cultivated with Ganoderma lucidum Mycelium.

Park, M. & Kim, M. (2017). Preventive Nutrition and Food Science, 22(4), 365371.

Candida albicans β-glucan-containing particles increase HO-1 expression in oral keratinocytes via ROS/p38MAPK/Nrf2 pathway.

Ishida, Y., Ohta, K., Naruse, T., Kato, H., Fukui, A., Shigeishi, H., Nishi, H., Kei Tobiume, K. & Takechi, M. (2018). Infection and Immunity, IAI-00575.

Effect of addition of different levels of β-glucan from minor millet on the functional, textural and sensory characteristics of cake premix and cake.

Sharma, S., Saxena, D. C. & Riar, C. S. (2018). Journal of Food Measurement and Characterization, 12(2), 1186-1194.
To choose a chapter, play the video and select the required chapter from the options on the video display.

Chapter 1: Theory of the Yeast Beta Glucan Assay Procedure
Chapter 2: Kit Components
Chapter 3: Preparation of Reagents
Chapter 4: Preparation of other Reagents required
Chapter 5: Measurement of 1, 3:1, 6-Beta-Glucan in Yeast Preparations
Chapter 6: Calculations

Below you will find a link to our dedicated frequently asked questions section. Within this section you will find common questions and answers on a range of topics about the product.

FAQs