α-Galactosidase (Aspergillus niger) Powder

High purity α-Galactosidase (Aspergillus niger) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

EC 3.2.1.22
CAZy Family: GH36
CAS: 9025-35-8

alpha-galactosidase; alpha-D-galactoside galactohydrolase

Highly purified. From Aspergillus niger.
Supplied as a freeze-dried powder.

Specific activity
~ 620 U/mg (40oC, pH 4.5 on p-nitrophenyl-α-D-galactopyranoside).

Stability: > 4 years at -20oC.

Product Code
Content/size
Stock
Price
Qty
E-AGLANP
3,000 Units
$239.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

DESCRIPTION

α-Galactosidase (Aspergillus niger) Powder

EC 3.2.1.22
CAZy Family: GH36
CAS: 9025-35-8

Synonyms:
alpha-galactosidase; alpha-D-galactoside galactohydrolase

Form:
Supplied as a freeze-dried powder.

Stability: 
> 4 years at -20oC.

Specific activity:
~ 620 U/mg (40oC, pH 4.5 on p-nitrophenyl-α-D-galactopyranoside).

Unit definition:.
One Unit of activity is the amount of enzyme required to release one µmole of p-nitrophenol (pNP) per minute from p-nitrophenyl-α-D-galactopyranoside per min at pH 4.5 and 40oC.

Specificity:
Hydrolysis of terminal, non-reducing α-D-galactose residues in α-D-galactosides, including galactose oligosaccharides, galactomannans and galactolipids.

Applications:
Applications in carbohydrate and glycobiology research.

α-D-galactosidase activity and galactomannan and galactosylsucrose oligosaccharide depletion in germinating legume seeds.

McCleary, B. V. & Matheson, N. K. (1974). Phytochemistry, 13(9), 1747-1757.

Galactomannan structure and β-mannanase and β-mannosidase activity in germinating legume seeds.

McCleary, B. V. & Matheson, N. K. (1975). Phytochemistry, 14(5-6), 1187-1194.

Galactomannans and a galactoglucomannan in legume seed endosperms: Structural requirements for β-mannanase hydrolysis.

McCleary, B. V., Matheson, N. K. & Small, D. B. (1976). Phytochemistry, 15(7), 1111-1117.

Modes of action of β-mannanase enzymes of diverse origin on legume seed galactomannans.

McCleary, B. V. (1979). Phytochemistry, 18(5), 757-763.

An enzymic technique for the quantitation of galactomannan in guar Seeds.

McCleary, B. V. (1981). Lebensmittel-Wissenschaft & Technologie, 14, 56-59.

Purification and properties of a β-D-mannoside mannohydrolase from guar.

McCleary, B. V. (1982), Carbohydrate Research, 101(1), 75-92.

Preparative–scale isolation and characterisation of 61-α-D-galactosyl-(1→4)-β-D-mannobiose and 62-α-D-galactosyl-(1→4)-β-D-mannobiose.

McCleary, B. V., Taravel, F. R. & Cheetham, N. W. H. (1982). Carbohydrate Research, 104(2), 285-297.

β-D-mannosidase from Helix pomatia.

McCleary, B. V. (1983). Carbohydrate Research, 111(2), 297-310.

Enzymic interactions in the hydrolysis of galactomannan in germinating guar: The role of exo-β-mannanase.

McCleary, B. V. (1983). Phytochemistry, 22(3), 649-658.

Characterisation of the oligosaccharides produced on hydrolysis of galactomannan with β-D-mannase.

McCleary, B. V., Nurthen, E., Taravel, F. R. & Joseleau, J. P. (1983). Carbohydrate Research, 118, 91-109.

Action patterns and substrate-binding requirements of β-D-mannanase with mannosaccharides and mannan-type polysaccharides.

McCleary, B. V. & Matheson, N. K. (1983). Carbohydrate Research, 119, 191-219.

The fine structures of carob and guar galactomannans.

McCleary, B. V., Clark, A. H., Dea, I. C. M. & Rees, D. A. (1985). Carbohydrate Research, 139, 237-260.

Effect of galactose-substitution-patterns on the interaction properties of galactomannas.

Dea, I. C. M., Clark, A. H. & McCleary, B. V. (1986). Carbohydrate Research, 147(2), 275-294.

Effect of the molecular fine structure of galactomannans on their interaction properties - the role of unsubstituted sides.

Dea, I. C. M., Clark, A. H. & McCleary, B. V. (1986). Food Hydrocolloids, 1(2), 129-140.

Galactomannan changes in developing Gleditsia Triacanthos Seeds.

McCleary, B. V., Mallett, I. & Matheson, N. K. (1987). Phytochemistry, 26(7), 1889-1894.

Distribution and characterisation of fructan in wheat milling fractions.

Haskå, L., Nyman, M. & Andersson, R. (2008). Journal of Cereal Science, 48(3), 768-774.

Effect of abandonment and plant classification on carbohydrate reserves of meadow plants.

Janeček, Š., Lanta, V., Klimešová, J. & Doležal, J. (2011). Plant Biology, 13(2), 243-251.