endo-1,4 β-Mannanase (Aspergillus niger

High purity endo-1,4 β-Mannanase (Aspergillus niger) for use in research, biochemical enzyme assays and in vitro diagnostic analysis.

EC 3.2.1.78
CAZy Family: GH26
CAS: 37288-54-3

mannan endo-1,4-beta-mannosidase; 4-beta-D-mannan mannanohydrolase

Highly purified. From Aspergillus niger
In 3.2 M ammonium sulphate.
Supplied at ~ 600 U/mL. 

Specific activity: 
~ 50 U/mg (40oC, pH 4.0 on carob galactomannan).

Stability: > 4 years at 4oC.

Product Code
Content/size
Stock
Price
Qty
E-BMANN
600 Units
$182.00

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page

DESCRIPTION

endo-1,4 β-Mannanase (Aspergillus niger)

EC 3.2.1.78
CAZy Family: GH26
CAS: 37288-54-3

Synonyms:
mannan endo-1,4-beta-mannosidase; 4-beta-D-mannan mannanohydrolase

Form:
In 3.2M ammonium sulphate.

Stability: 
4 years at 4oC.

Specific activity:
~ 50 U/mg (40oC, pH 4.0 on carob galactomannan).

Unit definition:
One Unit of mannanase activity is defined as the amount of enzyme required to release one µmole of mannose reducing-sugar equivalents per minute from carob galactomannan (10 mg/mL) in sodium acetate buffer (100 mM), pH 4.0 at 40oC.

Specificity:
Random hydrolysis of (1,4)-β-D-mannosidic linkages in mannans, galactomannans and glucomannans.

Applications:
Applications established in diagnostics and research within the food and feed, carbohydrate, biofuels and paper production industries.

Galactomannan structure and β-mannanase and β-mannosidase activity in germinating legume seeds.

McCleary, B. V. & Matheson, N. K. (1975). Phytochemistry, 14(5-6), 1187-1194.

Galactomannans and a galactoglucomannan in legume seed endosperms: Structural requirements for β-mannanase hydrolysis.

McCleary, B. V., Matheson, N. K. & Small, D. B. (1976). Phytochemistry, 15(7), 1111-1117.

Modes of action of β-mannanase enzymes of diverse origin on legume seed galactomannans.

McCleary, B. V. (1979). Phytochemistry, 18(5), 757-763.

An enzymic technique for the quantitation of galactomannan in guar Seeds.

McCleary, B. V. (1981). Lebensmittel-Wissenschaft & Technologie, 14, 56-59.

Purification and properties of a β-D-mannoside mannohydrolase from guar.

McCleary, B. V. (1982), Carbohydrate Research, 101(1), 75-92.

Preparative–scale isolation and characterisation of 61-α-D-galactosyl-(1→4)-β-D-mannobiose and 62-α-D-galactosyl-(1→4)-β-D-mannobiose.

McCleary, B. V., Taravel, F. R. & Cheetham, N. W. H. (1982). Carbohydrate Research, 104(2), 285-297.

β-D-mannosidase from Helix pomatia.

McCleary, B. V. (1983). Carbohydrate Research, 111(2), 297-310.

Enzymic interactions in the hydrolysis of galactomannan in germinating guar: The role of exo-β-mannanase.

McCleary, B. V. (1983). Phytochemistry, 22(3), 649-658.

Characterisation of the oligosaccharides produced on hydrolysis of galactomannan with β-D-mannase.

McCleary, B. V., Nurthen, E., Taravel, F. R. & Joseleau, J. P. (1983). Carbohydrate Research, 118, 91-109.

Action patterns and substrate-binding requirements of β-D-mannanase with mannosaccharides and mannan-type polysaccharides.

McCleary, B. V. & Matheson, N. K. (1983). Carbohydrate Research, 119, 191-219.

The fine structures of carob and guar galactomannans.

McCleary, B. V., Clark, A. H., Dea, I. C. M. & Rees, D. A. (1985). Carbohydrate Research, 139, 237-260.

Effect of galactose-substitution-patterns on the interaction properties of galactomannas.

Dea, I. C. M., Clark, A. H. & McCleary, B. V. (1986). Carbohydrate Research, 147(2), 275-294.

Effect of the molecular fine structure of galactomannans on their interaction properties - the role of unsubstituted sides.

Dea, I. C. M., Clark, A. H. & McCleary, B. V. (1986). Food Hydrocolloids, 1(2), 129-140.

Galactomannan changes in developing Gleditsia Triacanthos Seeds.

McCleary, B. V., Mallett, I. & Matheson, N. K. (1987). Phytochemistry, 26(7), 1889-1894.

Rapid optimization of enzyme mixtures for deconstruction of diverse pretreatment/biomass feedstock combinations.

Banerjee, G., Car, S., Scott-Craig, J. S., Borrusch, M. S. & Walton, J. D. (2010). Biotechnology for Biofuels, 3(1), 22.

Expression of Trichoderma reesei β-mannanase in tobacco chloroplasts and its utilization in lignocellulosic woody biomass hydrolysis.

Agrawal, P., Verma, D. & Daniell, H. (2011). PloS One, 6(12), e29302.

High-throughput enzymatic hydrolysis of lignocellulosic biomass via in-situ regeneration.

Bharadwaj, R., Wong, A., Knierim, B., Singh, S., Holmes, B. M., Auer, M., Simmons, B. A., Adams, P. D. & Singh, A. K. (2011). Bioresource Technology, 102(2), 1329-1337.

Surface kinetics for cooperative fungal cellulase digestion of cellulose from quartz crystal microgravimetry.

Maurer, S. A., Brady, N. W., Fajardo, N. P. & Radke, C. J. (2013). Journal of Colloid and Interface Science, 394, 498-508.

New glycosidase substrates for droplet-based microfluidic screening.

Najah, M., Mayot, E., Mahendra-Wijaya, I. P., Griffiths, A. D., Ladame, S. & Drevelle, A. (2013). Analytical Chemistry, 85(20), 9807-9814.

Droplet-based microfluidic platform for heterogeneous enzymatic assays.

Chang, C., Sustarich, J., Bharadwaj, R., Chandrasekaran, A., Adams, P. D. & Singh, A. K. (2013). Lab Chip, 13(9), 1817-1822.

Impact of fine structure of galactomannans on their interactions with xanthan: Two co-existing mechanisms to explain the synergy.

Grisel, M., Aguni, Y., Renou, F. & Malhiac, C. (2015). Food Hydrocolloids, 51, 449-458.

Understanding β‐mannanase from Streptomyces sp. CS147 and its potential application in lignocellulose based biorefining.

Yoo, H. Y., Pradeep, G. C., Lee, S. K., Park, D. H., Cho, S. S., Choi, Y. H., Yoo, J. C. & Kim, S. W. (2015). Biotechnology Journal, 10(12), 1894-1902.

Desiccation tolerance of Rhamnidium elaeocarpum Reissek (Rhamnaceae) seeds.

Silva, L. A. D., Sales, J. D. F., Oliveira, J. A., Pinho, É. V. D. R. V., Santos, H. O. D. & Soares, M. A. (2015). Acta Scientiarum. Agronomy, 37(2), 181-189.

The physico-chemical properties of dietary fibre determine metabolic responses, short-chain fatty acid profiles and gut microbiota composition in rats fed low- and high-fat diets.

Fåk, F., Jakobsdottir, G., Kulcinskaja, E., Marungruang, N., Matziouridou, C., Nilsson, U., Stålbrand, H. & Nyman, M. (2015). PloS One, 10(5), e0127252.