endo-1,4-β-Xylanase M1 (Trichoderma viride

High purity endo-1,4-β-Xylanase M1 (Trichoderma viride) for use in research, biochemical enzyme assays and in vitro
diagnostic analysis.

CAZy Family: GH11
CAS: 9025-57-4

endo-1,4-beta-xylanase; 4-beta-D-xylan xylanohydrolase

Highly purified. From Trichoderma viride. Electrophoretically homogeneous.
In 3.2 M ammonium sulphate.
Supplied at ~ 1,700 U/mL. 

Specific activity:
~ 230 U/mg (40oC, pH 4.5 on wheat arabinoxylan).

Stability: > 4 years at 4oC.

Product Code
8,000 Units

In association with DHL Express Megazyme offers expedited same day shipping on all orders received before 12 noon GMT, DHL offers express shipping to over 220 countries worldwide serving 35 countries next day and 65 within 2 days. For further details visit our delivery page. Should delivery error or damage require you to return a product please contact our Customer Service team to obtain shipping instructions and authorisation. For full terms and conditions see T&Cs.

We support the following payment methods:

  • Visa
  • MasterCard
  • American Express
  • Cheque
  • Wire Transfer / EFT /ACH

For further details visit our payment page


endo-1,4-β-Xylanase M1 (Trichoderma viride)

CAZy Family: GH11
CAS: 9025-57-4

endo-1,4-beta-xylanase; 4-beta-D-xylan xylanohydrolase

In 3.2 M ammonium sulphate.

> 4 years at 4oC.

Specific activity:
~ 230 U/mg (40oC, pH 4.5 on wheat arabinoxylan).

Unit definition:
One Unit of xylanase activity is defined as the amount of enzyme required to release one µmole of xylose reducing-sugar equivalents per minute from wheat arabinoxylan(10 mg/mL) in sodium acetate buffer (100 mM), pH 4.5 at 40oC.

endo-hydrolysis of (1,4)-β-D-xylosidic linkages in xylans.

Applications in carbohydrate and biofuels research and in the food and feeds and paper pulping industries. 

Novel substrates for the automated and manual assay of endo-1,4-β-xylanase.

Mangan, D., Cornaggia, C., Liadova, A., McCormack, N., Ivory, R., McKie, V. A., Ormerod, A. & McCleary, D. V. (2017). Carbohydrate Research, 445, 14-22.

Hydrolysis of wheat flour arabinoxylan, acid-debranched wheat flour arabinoxylan and arabino-xylo-oligosaccharides by β-xylanase, α-L-arabinofuranosidase and β-xylosidase.

McCleary, B. V., McKie, V. A., Draga, A., Rooney, E., Mangan, D. & Larkin, J. (2015). Carbohydrate Research, 407, 79-96.

A Comparison of Polysaccharide Substrates and Reducing Sugar Methods for the Measurement of endo-1,4-β-Xylanase

McCleary, B. V. & McGeough, P. (2015). Appl. Biochem. Biotechnol., 177(5), 1152-1163.

A simple procedure for the large-scale purification of β-D-xylanase from Trichoderma viride.

Gibson, T. S. & McCleary, B. V. (1987). Carbohydrate Polymers, 7(3), 225- 240.

Evaluation of the xylan breakdown potential of eight mesophilic endoxylanases.

Cuyvers, S., Dornez, E., Moers, K., Pollet, A., Delcour, J. A. & Courtin, C. M. (2011). Enzyme and Microbial Technology, 49(3), 305-311.

His374 of wheat endoxylanase inhibitor TAXI‐I stabilizes complex formation with glycoside hydrolase family 11 endoxylanases.

Fierens, K., Gils, A., Sansen, S., Brijs, K., Courtin, C. M., Declerck, P. J., De Ranter, C. J., Gebruers, K., Rabijns, A., Robben, J., Van Campenhout, S., Volckaert, G. & Delcour, J. A. (2005). FEBS Journal, 272(22), 5872-5882.

Nectarin IV, a potent endoglucanase inhibitor secreted into the nectar of ornamental tobacco plants. Isolation, cloning, and characterization.

Naqvi, S. M. S., Harper, A., Carter, C., Ren, G., Guirgis, A., York, W. S. & Thornburg, R. W. (2005). Plant Physiology, 139(3), 1389-1400.

Down-regulation of the CSLF6 gene results in decreased (1,3;1,4)-β-D-glucan in endosperm of wheat.

Nemeth, C., Freeman, J., Jones, H. D., Sparks, C., Pellny, T. K., Wilkinson, M. D., Dunwell, J., Andersson, A. A. M., Aman, P., Guillon, F., Saulnier, L., Mitchell, R. A. C. & Shewry, P. R. (2010). Plant Physiology, 152(3), 1209-1218.

New insights into the structural and spatial variability of cell-wall polysaccharides during wheat grain development, as revealed through MALDI mass spectrometry imaging.

Veličković, D., Ropartz, D., Guillon, F., Saulnier, L. & Rogniaux, H. (2014). Journal of Experimental Botany, 65(8), 2079-2091.

Arabidopsis and Brachypodium distachyon transgenic plants expressing Aspergillus nidulans acetylesterases have decreased degree of polysaccharide acetylation and increased resistance to pathogens.

Pogorelko, G., Lionetti, V., Fursova, O., Sundaram, R. M., Qi, M., Whitham, S. A., Bogdanove, A. J., Bellincampi, D. & Zabotina, O. A. (2013). Plant Physiology, 162(1), 9-23.

Endoxylanase substrate selectivity determines degradation of wheat water-extractable and water-unextractable arabinoxylan.

Moers, K., Celus, I., Brijs, K., Courtin, C. M. & Delcour, J. A. (2005). Carbohydrate Research, 340(7), 1319-1327.

Impact of different lignin fractions on saccharification efficiency in diverse species of the bioenergy crop miscanthus.

van der Weijde, T., Torres, A. F., Dolstra, O., Dechesne, A., Visser, R. G., & Trindade, L. M. (2016). BioEnergy Research, 9(1), 146-156.

Pure enzyme cocktails tailored for the saccharification of sugarcane bagasse pretreated by using different methods. (2017).

Kim, I. J., Lee, H. J. & Kim, K. H. Process Biochemistry, 57, 167-174.

Multi-layer mucilage of Plantago ovata seeds: Rheological differences arise from variations in arabinoxylan side chains.

Yu, L., Yakubov, G. E., Zeng, W., Xing, X, Stenson, J., Bulone, V. & Stokes, J. R. (2017). Journal of the Science of Food and Agriculture, 165(1), 132-141.

New insights into the enzymatic hydrolysis of lignocellulosic polymers by using fluorescent tagged carbohydrate-binding modules.

Khatri, V., Meddeb-Mouelhi, F. & Beauregard, M. (2018). Sustainable Energy & Fuels, In Press.

High xylan recovery using two stage alkali pre-treatment process from high lignin biomass and its valorisation to xylooligosaccharides of low degree of polymerisation.

Singh, R. D., Banerjee, J., Sasmal, S., Muir, J. & Arora, A. (2018). Bioresource Technology, In Press.

Laccase pretreatment for agrofood wastes valorization.

Giacobbe, S., Pezzella, C., Lettera, V., Sannia, G. & Piscitelli, A. (2018). Bioresource Technology, 265, 59-65.

Distribution of cell wall hemicelluloses in the wheat grain endosperm: a 3D perspective.

Fanuel, M., Ropartz, D., Guillon, F., Saulnier, L. & Rogniaux, H. (2018). Planta, 1-9.